Риск в задачах линейного программирования

СОДЕРЖАНИЕ: Лабораторная работа №3 Риск в задачах линейного программирования. Задание Предприятие выпускает 2 вида продукции в объмах Н1 и Н2. Известен случайный вектор ограничений -

Лабораторная работа №3

Риск в задачах линейного программирования.

Задание :

Предприятие выпускает 2 вида продукции в объмах Н1 и Н2.

Известен случайный вектор ограничений -

и вектор цен на продукцию –

0,7

0,8

0,5

0,6

0,4

0,5

0,2

в процессе производства допускаются альтернативные технологии выпуска продукции, которые задаются с помощью дерева технологий:

а11 = 1,1 + 0,01 * N или 1,5 + 0,01 * N

a12 = 3,1 + 0,01 * N или 3,3 + 0,01 * N

0,3

а21 = 2,2 + 0,01 * N или 2,7 + 0,01 * N

a22 = 4,1 + 0,01 * N или 4,5 + 0,01 * N

a11 = 1,31 с вероятностью p = 0,2

или a11 = 1,71 с вероятностью p = 0,2

a12 = 3,31 с вероятностью p = 0,8

или a12 = 3,51 с вероятностью p = 0,2

a21 = 2,41 с вероятностью p = 0,4

или a21 = 2,91 с вероятностью p = 0,2

a22 = 4,31 с вероятностью p = 0,6

или a22 = 4,71 с вероятностью p = 0,2

Решени е :

;


Различают альтернативные варианты матрицы :

1) 2) 3) 4)

5) 6) 7) 8)

9) 10) 11) 12)

13) 14) 15) 16)

Составим задачи линейного программирования, соответствующие каждому значению матрицы А, которые достигаются с известными вероятностями. Каждую из этих задач решим на ЭВМ симплекс-методом.

1) x1 = 0; x2 = 42,24924; z = 126,3252; p = 0,012

2) x1 = 0; x2 = 42,24924; z = 126,3252; p = 0,048

3) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,018

4) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,012

5) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,028

6) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,072

7) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,056

8) x1 = 0; x2 = 42,24924; z = 126,3252; p = 0,048

9) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,028

10) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,168

11) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,018

12) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,072

13) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,042

14) x1 = 0; x2 = 42,24924; z = 126,3252; p = 0,112

15) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,168

16) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,168

Распределение случайной величины у максимального дохода полученное в результате вычислений :

Z

126,32

126,32

119,086

149,77

149,77

119,086

149,77

126,32

P

0,012

0,048

0,018

0,012

0,028

0,072

0,056

0,048

Z

149,77

119,086

149,77

119,08

149,77

126,32

119,08

119,08

P

0,028

0,168

0,018

0,168

0,042

0,112

0,168

0,168

1) В силу критерия ожидаемого значения имеем среднее значение максимального дохода.

M(z) = 149,7*0,012 + 126,3*0,048 + 119,08*0,018 + 149,7*0,012 + 149,7*0,028 +

+ 119,08*0,072 + 149,7*0,056 + 126,3*0,048 + 149,7*0,028 + 119,08*0,168 + 149,7*0,018 + 119,08*0,072 + 149,7*0,028 + 119,08*0,168 + 149,7*0,018 + 119,08*0,072 + 126,3*0,012 + 119,08*0,168 + 119,08*0,168 = 115,985

2) Определим величину максимального дохода, а также соответствующую технологию выпуска продукции.

Zmax = Z12 = 119,08

P12 = P15 = 0,168 = max знач.

Aopt1 = A12 = ;

или

Aopt2 = A15 = .

Скачать архив с текстом документа