Определение содержания и свойств соединений меди в водных растворах
СОДЕРЖАНИЕ: Федеральное агентство по образованию Государственное образовательное учреждение Высшего Профессионального образования «Уральская государственная медицинская академия»Федеральное агентство по образованию
Государственное образовательное учреждение Высшего Профессионального образования
«Уральская государственная медицинская академия»
Кафедра Общей химии
РЕФЕРАТ
«Определение содержания и свойств соединений меди в водных растворах»
Студентов педиатрического факультета
Группы ОП-104
Чернавина С.В
Гордиенко И.И.
Научный руководитель:
к.т.н. Белоконова Надежда Анатольевн
Екатеринбург 2010
План
1.Теоритическая часть
1.1.Общие сведенья о металле и его распространенность
1.2.Физические и химические свойства меди.
1.3.Использование соединений меди.
1.4.Биологиеское значение.
1.5.Диагностика заболеваний по меди
1.6.Нахождение в продуктах питания и воде.
2.Практическая часть
2.1.Определение количества меди в растворах по ГОСТ методике
2.2.Анализ структуры и свойств полученных растворов меди
3.Вывод
Теоритическая часть
Общие сведенья о металле и его распространенность
Медь (лат.Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до Р.Хр. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состоянии на поверхности земли, а с другой - сравнительной легкостью получения ее из соединений. Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и название ее Cuprum. Среднее содержание меди в земной коре 4,7·10-3 % (по массе), в нижней части земной коры ее больше (1·10-2%), чем в верхней (2·10-3%), где преобладают граниты и другие кислые изверженные породы. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды Меди, имеющие большое промышленное значение. Среди многочисленных минералов Меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная Медь, карбонаты и оксиды. Медь встречается в природе, как в соединениях, так и в самородном виде
Физические и химические свойства меди.
Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра). Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами. Существует ряд сплавов меди: латунь — сплав меди с цинком, бронза — сплав меди с оловом, мельхиор — сплав меди и никеля, и некоторые другие.
По химическим свойствам медь занимает промежуточное положение между элементами первой триады VIII группы и щелочными элементами I группы системы Менделеева. Медь, как и Fe, Co, Ni, склонна к комплексообразованию, дает окрашенные соединения, нерастворимые сульфиды и т. д. Сходство с щелочными металлами незначительно. Так, медь образует ряд одновалентных соединений, однако для нее более характерно 2-валентное состояние. Соли одновалентной меди в воде практически нерастворимы и легко окисляются до соединений 2-валентной меди; соли 2-валентной меди, напротив, хорошо растворимы в воде и в разбавленных растворах полностью диссоциированы. Гидратированные ионы Cu2+ окрашены в голубой цвет. Известны также соединения, в которых медь 3-валентна. Так, действием пероксида натрия на раствор куприта натрия Na2CuO2 получен оксид Сu2О3 - красный порошок, начинающий отдавать кислород уже при 100 °С. Сu2О3 - сильный окислитель (например, выделяет хлор из соляной кислоты).
Химическая активность меди невелика. Компактный металл при температурах ниже 185 °С с сухим воздухом и кислородом не взаимодействует. При нагревании меди на воздухе идет поверхностное окисление; ниже 375 °С образуется СuО, а в интервале 375-1100 °С при неполном окислении медь - двухслойная окалина, в поверхностном слое которой находится СuО, а во внутреннем - Сu2О. Влажный хлор взаимодействует с медью уже при обычной температуре, образуя хлорид СuCl2, хорошо растворимый в воде. Медь легко соединяется и с других галогенами. Особое сродство проявляет медь к сере и селену; так, она горит в парах серы. С водородом, азотом и углеродом медь не реагирует даже при высоких температурах. Растворимость водорода в твердой медь незначительна и при 400 °С составляет 0,06 мг в 100 г меди. Водород и других горючие газы (СО, СН4), действуя при высокой температуре на слитки меди, содержащие Сu2О, восстановляют ее до металла с образованием СО2 и водяного пара. Эти продукты, будучи нерастворимыми в меди, выделяются из нее, вызывая появление трещин, что резко ухудшает механические свойства меди. Медь образует многочисленные устойчивые комплексные соединения - (NH4)2CuBr3; K3Cu(CN)4- комплексы типа двойных солей; [Cu{SC(NH2)}2]Cl, CsCuCl3, K2CuCl4 и др. Важное промышленное значение имеют аммиачные комплексные соединения меди: [Сu (NH3)4] SO4, [Сu (NH3)2] SO4.
Использование соединений меди.
Большая роль меди в технике обусловлена рядом ее ценных свойств и прежде всего высокой электропроводностью, пластичностью, теплопроводностью. Благодаря этим свойствам медь - основной материал для проводов; свыше 50% добываемой меди применяют в электротехнической промышленности. Все примеси понижают электропроводность меди, а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9% Cu. Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из меди ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30-40% меди используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50% Zn) и различные виды бронз: оловянистые, алюминиевые, свинцовистые, бериллиевые и т. д. Кроме нужд тяжелой промышленности, связи, транспорта, некоторое количество меди (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шелка.
Биологическое значение.
Медь – очень важный для жизни металл. Содержание меди в организме человека колеблется (на 100 г сухой массы) от 5 мг в печени до 0,7 мг в костях, в жидкостях тела - от 100 мкг (на 100 мл) в крови до 10 мкг в спинномозговой жидкости. А всего меди в организме взрослого человека около 100 мг. Многие биологические процессы будут невозможны или существенно затруднены без участия меди: медь входит в состав ферментов, которые регулируют энергетический и информационный обмен в клетках, является активным катализатором в окислительно-восстановительных реакциях; участвует в кроветворении, входит в состав ферментов для синтеза эритроцитов и лейкоцитов. Кроме того, она участвует в образовании гемоглобина при участии железа и витамина С; обеспечивает транспорт железа из печени, его перенос между органами и тканями; стимулирует иммунитет, играет важную роль в системе антиоксидантной защиты организма и нейтрализует свободные радикалы, поддерживая целостность здоровых клеток; обеспечивает здоровьем костную ткань, предотвращает её деминерализацию, переломы, развитие остеопороза; повышает продолжительность жизни эритроцитов и устойчивость клеточных мембран; улучшает состояние кожи, участвуя в образовании коллагена (вещества, придающего коже упругость, эластичность и гладкость); укрепляет сосудистую стенку за счет участия в образовании соединительной ткани - эластина. (Эластин - это, по сути, каркас из прочных и упругих волокон во внутренних слоях кожи, который держит нужную форму кровеносных сосудов). Ежедневный прием меди с пищей составляет 0,50-6 мг, из которых усваивается только 30%. Токсическая доза меди больше 250 мг. Попав в организм, соединение меди поступает в печень, которая является главным складом этого микроэлемента. Медь концентрируется также в мозге, сердце и почках, мышечной и костной тканях. Около 80% меди выделяется с желчью, примерно 16% секретируется в кишечник из крови и около 4% (140 мкг/сут) составляют ренальные потери. Незначительные потери происходят со слюной и потом. Основными органами накопления меди является печень (30%), головной мозг (30%). Остальная медь равномерно распределяется по органам и тканям, причем половина этого количества находится в костях и мышцах. Печень является главным депо этого элемента и местом синтеза церрулоплазмина, в образовании которого участвует 90 - 95% меди
Диагностика заболеваний по меди
При многих других заболеваниях наблюдается увеличение меди сыворотки: так при инфекционном гепатите наблюдается увеличение сыворотки меди в 3 раза по сравнению с нормой – 350мкг/100мл. это связано с накоплением церулоплазмина Повышение меди в крови встречается при таких заболеваниях, как лейкемия, лимфома, ревматоидный артрит, цирроз, нефрит. Высокий уровень меди может быть связан с различными явлениями, и обнаружение высоких концентраций меди в сыворотке представляет диагностическую ценность только при одновременном рассмотрении с данными других исследований. Анализ концентрации ионов меди необходимо проводить для оценки эффективности лечения, так как уровень меди прямо пропорционален тяжести заболевания. Это положение верно при гепатитах и злокачественных заболеваниях.
Нахождение в продуктах питания и воде.
Мы получаем медь из продуктов питания, причем содержание меди в них зависит от ее количества в почве и может значительно возрасти, если почву будут удобрять сернокислой медью. В листьях женьшеня накапливается чрезвычайно высокая концентрация меди, несмотря на то, что в почве, где рос женьшень, этого металла было немного. В нем также обнаружены большие концентрации кальция и железа, но меньше калия, титана, марганца, цинка, рубидия, никеля и молибдена. Отсюда вывод: женьшень — замечательный накопитель многих важных микроэлементов и витаминов. Растения берут из почвы не более 4% меди, а мы усваиваем лишь около 10% ее из продуктов питания. Медь выделяется с калом. Но специального лечения медью не требуется. Достаточно меди в тех продуктах, которые мы едим, а у младенцев есть запас этого элемента в печени.
Практическая часть
Определение количества меди в растворах по ГОСТ методике
Для количественного определения меди в различных водных растворах существует методика, сущность которой состоит в образование коллоидных систем, на основе комплексных соединений меди с ДДТ. В приложении 1 представлен градуированный график, показывающий зависимость оптической плотности от концентрации меди. Он построен при помощи стандартных растворов меди. Т.к. оптическая плотность должна лежать в диапазоне графика, для установления концентрации, нам приходилось разбавлять исследуемые растворы до входа в диапазон.
Методика была использована для определения содержания меди в растворах, образованных при помощи прибора Цеппер, который работает на пальчиковых батарейках с напряжением 1,5 В. Было получено 3 раствора, в которых время медированной, состовляло 5, 10 и 15 минут, далее, применяя методику, мы определяли содержание меди в этих растворах.
Было установлено, что содержание металла в растворе медированном 5 минут составляло 5,976мг/л, в растворе медированном 10 минут 11,703мг/л и 15 минут — 14,193мг/л.
Концентрация меди, в полученных водных растворах, намного превышает ПДК для питьевой воды, которая составляет 1 мг/л, следовательно, такую воду нельзя употреблять в пищу
Таблица 1: Зависимость концентрации от оптической плотности в-ва
№ Образца | Оптическая плотность | Концентрация меди раствора при разбавлении в 16 раз |
1 | 0.021 | 0,36 |
2 | 0.040 | 0,71 |
3 | 0.049 | 0,86 |
Образец №1 — вода медированая 5 минут
Образец №2 — вода медированая 10 минут
Образец №3 — вода медированая 15 минут
Концентрация меди в неразбавленных растворах образцов 1,2,3:
1. 0.36 * 16 = 5,976мг/л
2. 0,70 * 16 = 11,703мг/л
3. 0,86 * 16 = 14,193 мг/л
Полная методика количественного определения меди в Приложении 2 (ГОСТ 4388-72)
Анализ структуры и свойств полученных растворов меди
Т.к. при добавлении медного купороса в дистиллированную воду наблюдаем окрашивание воды в голубой цвет, а при добавлении в бутилированную - осадок основных солей, что свидетельствует о наличии медных ионов. Но получившиеся ранее растворы, не окрашиваются, и мы предполагаем, что медь находится в КДС и заряд ее гранулы положительный.
Исходя из этого, мы добавляли различные соли сильных электролитов с различными зарядами их анионов ит.к. способность понижать устойчивость комплекса напрямую зависит от заряда, то мы должны видеть эту зависимость на спектре. Сначала в 3 пробирки с 25мл воды, медированной 15 минут, добавляли растворы электролитов различных концентраций, но на раствор это никак не повлияло. Следовательно, к тому же раствору необходимо добавить сухие электролиты. В первую пробирку был добавлен NaCl массой 0.05грамм, а в оставшиеся пробирки Na2SO4 и Na3PO4 в эквивалентных количествах, что по массе составило 0.06 и 0.045 грамм соответственно. С этих растворов, а также с растворов NaCl и Na2SO4 после нагревания в микроволновке(30с) был снят спектр, на котором видно, что электролит NaCl не оказал воздействие на раствор даже после нагревания, а Na3PO4 полностью провзаимодействовал с мицеллами и наблюдается осаждение комплекса. Следовательно, гранула вещества заряжена положительно, а оптимальным для изучения устойчивости коллоидных растворов меди является электролит Na2SO4 т.к. он наиболее показательно осаждает комплексы меди. (График с полученными спектрами представлен в Приложении 3)
Вывод
Проделав данные опыты, было установлено, что при использовании прибора Цеппер, для медирования воды, образуются коллоидные растворы меди, которые обладают высокой устойчивостью к осаждению. И т.к. гранула данного коллоидного раствора заряжена положительно, то его можно использовать как антибактериальное средство. Безусловно, антибактерицидный эффект должен быть оценен в процессе специальных исследований.