Семь инструментов качества
СОДЕРЖАНИЕ: ВАРИАНТ 1: Теория: Семь инструментов качества (графические методы оценки качества продукции) Содержание Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2ВАРИАНТ 1:
Теория: Семь инструментов качества (графические методы оценки качества продукции)
Содержание
Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Семь простых инструментов качества . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2. Причинно-следственная диаграмма (диаграмма Ишикавы). . . . 5
3. Контрольные листки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Гистограммы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5. Диаграммы разброса. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6. Анализ Парето. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7. Стратификация. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8. Контрольные карты. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Задача. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Литература . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Введение
В современном мире чрезвычайно важное значение приобретает проблема качества продукции. От ее успешного решения в значительной степени зависит благополучие любой фирмы, любого поставщика. Продукция более высокого качества существенно повышает шансы поставщика в конкурентной борьбе за рынки сбыта и, самое важное, лучше удовлетворяет потребности потребителей. Качество продукции - это важнейший показатель конкурентоспособности предприятия.
Качество продукции закладывается в процессе научных исследований, конструкторских и технологических разработок, обеспечивается хорошей организацией производства и, наконец, оно поддерживается в процессе эксплуатации или потребления. На всех этих этапах важно осуществлять своевременный контроль и получать достоверную оценку качества продукции.
Для уменьшения затрат и достижения уровня качества, удовлетворяющего потребителя нужны методы, направленные не на устранение дефектов (несоответствий) готовой продукции, а на предупреждение причин их появления в процессе производства.
Цель работы – изучение семи инструментов в области управления качеством продукции на предприятии. Задачи исследования: 1) Изучение этапов формирования методов контроля качества; 2) Изучение сущности семи инструментов качества. Объект исследования – методы исследования затрат на качество продукции.
1. Семь простых инструментов качества
Существовавшие издавна методы контроля сводились, как правило, к анализу брака путем сплошной проверки изготовленных изделий. При массовом производстве такой контроль очень дорог. Расчеты показывают, что для обеспечения качества продукции посредством ее разбраковки контрольный аппарат предприятий должен в пять-шесть раз превышать количество производственных рабочих.
С другой стороны, сплошной контроль в массовом производстве не гарантирует отсутствия дефектных изделий в принятой продукции. Опыт показывает, что контролер быстро устает, в результате чего часть годной продукции принимает за дефектную и наоборот. Практика также показывает - там, где увлекаются сплошным контролем, резко возрастают убытки от брака.
Указанные причины поставили производство перед необходимостью перехода к выборочному контролю.
Статистические методы позволяют обоснованно обнаруживать разладку процесса даже тогда, когда две-три единицы продукции, отобранные для контроля, окажутся годными, так как обладают высокой чувствительностью к изменениям в состоянии технологических процессов.
Годами упорного труда специалисты выделяли из мирового опыта по крупицам такие приемы и подходы, которые можно понять и эффективно использовать без специальной подготовки, причем делалось это так, чтобы обеспечить реальные достижения при решении подавляющего большинства проблем, возникающих в реальном производстве.
Один из базовых принципов управления качеством состоит в принятии решений на основе фактов. Наиболее полно это решается методом моделирования процессов, как производственных, так и управленческих инструментами математической статистики. Однако, современные статистические методы довольно сложны для восприятия и широкого практического использования без углубленной математической подготовки всех участников процесса. К 1979 году Союз японских ученых и инженеров (JUSE) собрал воедино семь достаточно простых в использовании наглядных методов анализа процессов. При всей своей простоте они сохраняют связь со статистикой и дают профессионалам возможность пользоваться их результатами, а при необходимости - совершенствовать их.
Это так называемые семь простых методов:
1) диаграмма Парето;
2) схема Исикавы;
3) расслаивание (стратификация);
4) контрольные листки;
5) гистограммы;
6) графики (на плоскости)
7) контрольные карты (Шухарта).
Иногда эти методы перечисляют в ином порядке, что не принципиально, поскольку предполагается их рассмотрение и как отдельных инструментов, и как системы методов, в которой в каждом конкретном случае предполагается специально определить состав и структуру рабочего набора инструментов.
Применение статистических методов - весьма действенный путь разработки новой технологии и контроля качества производственных процессов. Многие ведущие фирмы стремятся к их активному использованию, и некоторые из них тратят более ста часов ежегодно на обучение этим методам, осуществляемое в рамках самой фирмы. Хотя знание статистических методов - часть нормального образования инженера, само знание еще не означает умения применить его. Способность рассматривать события с точки зрения статистики важнее, чем знание самих методов. Кроме того, надо уметь честно признавать недостатки и возникшие изменения и собирать объективную информацию.
2. Причинно-следственная диаграмма (диаграмма Ишикавы)
Диаграмма типа 5М рассматривает такие компоненты качества, как “человек”, “машина”, “материал”, “метод”, “контроль”, а в диаграмме типа 6М к ним добавляется компонент “среда”. Применительно к решаемой задаче квалиметрического анализа, для компоненты “человек” необходимо определить факторы, связанные с удобством и безопасностью выполнения операций; для компоненты “машина” - взаимоотношения элементов конструкции анализируемого изделия между собой, связанные с выполнением данной операции; для компоненты “метод” - факторы, связанные с производительностью и точностью выполняемой операции; для компоненты “материал” - факторы, связанные с отсутствием изменений свойств материалов изделия в процессе выполнения данной операции; для компоненты “контроль” - факторы, связанные с достоверным распознаванием ошибки процесса выполнения операции; для компоненты “среда” - факторы, связанные с воздействием среды на изделие и изделия на среду.
Рис. 1 Пример диаграммы Ишикавы
3. Контрольные листки
Контрольные листки могут применяться как при контроле по качественным, так и при контроле по количественным признакам.
Рис. 2 Контрольные листки
4. Гистограммы
Гистограммы – один из вариантов столбчатой диаграммы, отображающий зависимость частоты попадания параметров качества изделия или процесса в определенный интервал значений от этих значений.
Гистограмма строится следующим образом:
1. Определяем наибольшее значение показателя качества.
2. Определяем наименьшее значение показателя качества.
3. Определяем диапазон гистограммы как разницу между наибольшим и наименьшим значением.
4. Определяем число интервалов гистограммы. Часто можно пользоваться приближенной формулой:
(число интервалов) = Ц (число значений показателей качества) Например, если число показателей = 50, число интервалов гистограммы = 7.
5. Определяем длину интервала гистограммы = (диапазон гистограммы) / (число интервалов).
6. Разбиваем диапазон гистограммы на интервалы.
7. Подсчитываем число попаданий результатов в каждый интервал.
8. Определяем частоту попаданий в интервал = (число попаданий)/(общее число показателей качества)
9. Строим столбчатую диаграмму
5. Диаграммы разброса
Диаграммы разброса представляют из себя графики вида, изображенного ниже, которые позволяют выявить корреляцию между двумя различными факторами.
Рис. 3 Диаграмма разброса: Взаимосвязи показателей качества практически нет.
Рис. 4 Диаграмма разброса: Имеется прямая взаимосвязь между показателями качества
Рис. 5 Диаграмма разброса: Имеется обратная взаимосвязь между показателями качества
6. Анализ Парето
Анализ Парето получил свое название по имени итальянского экономиста Вилфредо Парето, который показал, большая часть капитала (80%) находится в руках незначительного количества людей (20%). Парето разработал логарифмические математические модели, описывающие это неоднородное распределение, а математик М.Оа. Лоренц представил графические иллюстрации.
Правило Парето - “универсальный” принцип, который применим во множестве ситуаций, и без сомнения - в решении проблем качества. Джозеф Джуран отметил “универсальное” применение принципа Парето к любой группе причин, вызывающих то или иное последствие, причем большая часть последствий вызвана малым количеством причин. Анализ Парето ранжирует отдельные области по значимости или важности и призывает выявить и в первую очередь устранить те причины, которые вызывают наибольшее количество проблем (несоответствий).
Анализ Парето как правило иллюстрируется диаграммой Парето (рис. ниже), на которой по оси абсцисс отложены причины возникновения проблем качества в порядке убывания вызванных ими проблем, а по оси ординат – в количественном выражении сами проблемы, причем как в численном, так и в накопленном (кумулятивном) процентном выражении.
На диаграмме отчетливо видна область принятия первоочередных мер, очерчивающая те причины, которые вызывают наибольшее количество ошибок. Таким образом, в первую очередь, предупредительные мероприятия должны быть направлены на решение проблем именно этих проблем.
Рис. 6 Диаграмма Парето
7. Стратификация
В основном, стратификация - процесс сортировки данных согласно некоторым критериям или переменным, результаты которого часто показываются в виде диаграмм и графиков
Мы можем классифицировать массив данных в различные группы (или категории) с общими характеристиками, называемыми переменной стратификации. Важно установить, которые переменные будут использоваться для сортировки.
Стратификация - основа для других инструментов, таких как анализ Парето или диаграммы рассеивания. Такое сочетание инструментов делает их более мощными.
На рисунке приведен пример анализа источника возникновения дефектов. Все дефекты (100%) были классифицированы на четыре категории – по поставщикам, по операторам, по смене и по оборудованию. Из анализа представленных донных наглядно видно, что наибольший вклад в наличие дефектов вносит в данном случае «поставщик 1».
Рис. 7 Стратификация данных.
8. Контрольные карты
Контрольные карты – специальный вид диаграммы, впервые предложенный В. Шухартом в 1925 г. Контрольные карты имеют вид, представленный на рис. 4.12. Они отображают характер изменения показателя качества во времени.
Рис. 8 Общий вид контрольной карты
Контрольные карты по количественным признакам
Контрольные карты по количественным признакам - это как правило сдвоенные карты, одна из которых изображает изменение среднего значения процесса, а 2-я - разброса процесса. Разброс может вычисляться или на основе размаха процесса R (разницы между наибольшим и наименьшим значением), или на основе среднеквадратического отклонения процесса S.
В настоящее время обычно используются x- S карты, x - R карты используются реже.
Контрольные карты по качественным признакам
Карта для доли дефектных изделий (p - карта)
В p - карте подсчитывается доля дефектных изделий в выборке. Она применяется, когда объем выборки - переменный.
Карта для числа дефектных изделий (np - карта)
В np - карте подсчитывается число дефектных изделий в выборке. Она применяется, когда объем выборки - постоянный.
Карта для числа дефектов в выборке (с - карта)
В с - карте подсчитывается число дефектов в выборке.
Карта для числа дефектов на одно изделие (u - карта )
В u - карте подсчитывается число дефектов на одно изделие в выборке.
Рис. 9 Бланк контрольной карты
Заключение
Политика предприятия должна быть нацелена на высокое качество. Брак, являющийся его противоположностью, может возникнуть на любом предприятии. Его надо учитывать.
Анализ расходов на качество проводится в основном с целью определения важнейших и первоочередных задач по повышению качества. В зависимости от целей, задач анализа на качество и возможностей получения необходимой информации методы анализа качества могут быть различны. На это влияет и прохождение продукцией определенного этапа деятельности предприятия.
Умело организованный анализ качества может стать источником значительной экономии для предприятия, а также может повысить имидж предприятия в глазах потенциальных клиентов.
Задание № 2:
Основываясь на методике построения графического изображения оценки качества, постройте для завода по изготовлению кровельных листов диаграмму парето по следующим данным о браке в производстве кровельных листов (табл.1):
Табл.1 - Данные о браке в производстве кровельных листов
Вид брака | Количество бракованных изделий | Потери от брака (тыс. руб.) |
1. Боковые трещины | 140 | 5,4 |
2. Шелушение краски | 3400 | 3,7 |
3. Коробление | 900 | 62,0 |
4. Отклонение от перпендикулярности | 320 |
20,0 |
5. Грязная поверхность | 1320 | 4,5 |
6. Шероховатость поверхности | 1220 | 6,5 |
7. Винтообразность | 1250 | 8,5 |
8. Трещины по поверхности | 820 | 10,0 |
9. Боковой изгиб | 420 | 30,0 |
10. Прочие причины | 600 | 10,2 |
Решение:
Используемая литература:
1. Ильенкова С.Д. Управление качеством: учебник для студентов вузов – М.: ЮНИТИ-ДАНА,2007.- 352с.
2. Исикава К. Японские методы управления качеством. М.: Экономика, 1998. – 250с.
3. Лапидус В. А. Всеобщее качество в российских компаниях; Нац. Фонд подготовки кадров. – М.: Новости, 2000.- 435с.
4. Леонов И. Т. Управление качеством продукции. М.: Изд-во стандартов, 1990.- 375с.
5. Мазур И. И., Шапиро В. Д. Управление качеством: Учеб пособие для студентов вузов / И. И. Мазур, В. Д. Шапиро; Под общ. Ред. И. И. Мазура. М.: Омега-Л, 2005. – 256с.