Теоремы сложения и умножения вероятностей, вероятность появления хотябы одного события
СОДЕРЖАНИЕ: СОДЕРЖАНИЕ ВВЕДЕНИЕ …3 1. Определение вероятности .4 1.1 Классическое определение ….5СОДЕРЖАНИЕ
ВВЕДЕНИЕ ………………………………………………………………………3
1. Определение вероятности …………………………………………………….4
1.1 Классическое определение ………………………………………………….5
1.2 Геометрическое определение ……………………………………………….7
2. Теорема сложения вероятностей …………………………………………….9
3. Теорема умножения вероятностей ………………………………………….12
4. Случайные события………………………………………………………….15
4.1 Случайные события и величины, их основные характеристики ……….15
4. Взаимодействие случайных событий ……………………………………….17
4.3 Схемы случайных событий и законы распределения случайных величин ……………………………………………………………………………….23
ЗАКЛЮЧЕНИЕ ………………………………………………………………….27
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ …………………………….28
ВВЕДЕНИЕ
В настоящее время трудно представить исследование и прогнозирование экономических процессов без использования методов, опирающихся на теорию вероятностей. При принятии решений в области бизнеса, финансов, менеджмента основой корректности и, в конечном счете, успеха является правильный учет и анализ больших объемов статистической информации, а также грамотная оценка вероятностей происхождения тех или иных событий. Теоретической основой существующих специальных приемов и методов решения задач экономики являются теория вероятностей и математическая статистика.
Сочетание слов «теория вероятностей» для неискушенного человека производит несколько странное впечатление. В самом деле, слово «теория» связывается с наукой, а наука изучает закономерные явления; слово «вероятность» в обычном языке связывается с чем-то неопределенным, случайным, незакономерным. Поэтому люди, знающие о существовании теории вероятностей только понаслышке, говорят о ней часто иронически. Однако теория вероятностей – это большой, интенсивно развивающийся раздел математики, изучающий случайные явления.
В данной работе мы обратим внимание прежде всего на подходы к определению категории «вероятность». Второй интересующий нас момент – теоремы сложения и умножения вероятностей.
1. Определение вероятности
Рассматривая различные случайные события при выполнении одних и тех же условий G, нетрудно убедиться в том, что каждое из них обладает какой-то степенью возможности: одни большей, другие – меньшей. Так, например, события A= {появление дамы пик} и C = {появление карты бубновой масти} различаются возможностью происхождения в одних и тех же условиях. А события A = {появление герба} и B = {появление цифры} одинаково возможны при одном подбрасывании «правильной» монеты, т. е. монеты правильной формы и сделанной из однородного материала.
Для того чтобы количественно сравнивать между собой события по степени их возможности, очевидно необходимо с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число назовем вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности происхождения этого события в некоторых условиях. Будем говорить, что при выполнении комплекса условий G событие А происходит с вероятностью P(A).
Сравнивая между собой различные события по степени их возможности, мы должны установить какую-либо единицу измерения. В качестве такой единицы измерения естественно принять вероятность достоверного события, т. е. такого, которое в результате опыта непременно должно произойти. Если приписать достоверному событию вероятность, равную единице, то все другие события – возможные, но не достоверные – будут характеризоваться вероятностями, меньшими единицы, составляющими какую-то долю единицы.
Противоположностью по отношению к достоверному событию является невозможное событие, т. е. такое, которое в данном опыте не может произойти.
Естественно приписать невозможному событию вероятность, равную нулю. Таким образом, P()= 0, 0 P(A) 1.
Для определения вероятности события существуют различные подходы.
1.1 Классическое определение
Классическое определение вероятности сводит понятие вероятности к понятию равновероятности или равновозможности событий, которое считается основным и не подлежит формальному определению. Под равновозможными понимаются события, которые в силу тех или других причин (например, симметрии) не имеют объективного преимущества одно перед другим.
Если событие А подразделяется на m частных случаев, входящих в полную группу, состоящую из n равновозможных, попарно несовместных событий, то вероятность события А определяется как
(1.1)
Справедливость классического определения вероятности, т. е. справедливость формулы (1.1) можно обосновать следующим образом. Если под вероятностью события А понимать число
где p() – вероятности элементарных событий, определенные таким образом, что
то для пространства элементарных событий , состоящего из n равновозможных исходов, для всех. Тогда вероятность события А = {}, состоящего из m элементов, будет равна отношению числа элементарных событий , входящих в А, к общему числу элементарных событий в :
Здесь число элементов любого конечного множества M будем обозначать .
По-иному можно сказать, что вероятность события А, определяемая по формуле (1.1), равна отношению числа возможных исходов испытания, благоприятных наступлению события А, к числу всех возможных исходов испытания при условии, что все эти исходы равновозможны или равновероятны.
Приведем примеры классического определения вероятностей.
Пример 1. Правильная монета подбрасывается один раз. Найти вероятности событий: А = {появление герба}, В = {появление цифры}.
Решение. В этом простейшем примере = {1 ,2} , А={1} ; В={2} , где 1 = {г}; 2 = {ц}. Тогда по формуле (1.1)
.
Пример 2. Стандартная игральная кость брошена один раз. Каковы вероятности событий: А = {выпадения четного числа очков}, В = {выпадения числа очков, кратного трем}, С = {выпадение дробного числа очков}, D = {выпадение любого числа очков}.
Решение. Пространство элементарных событий = {1 ,2 ,...,6} , где i = {выпадение i очков, i = 1, 2,…,6}, = n = 6. Здесь А = {2 ,4 ,6}, = 3; В = {3 ,6} , = 2; С = , = 0 ; D = {1 ,2 ,...,6}, = 6 .
По классическому определению (1.1) получаем:
Классическое определение вероятности нельзя применить к опыту с бесконечным числом «равновероятных» исходов. В этом случае целесообразно переходить на геометрический язык и пользоваться геометрическим подходом к определению вероятности или геометрическими вероятностями.
1.2 Геометрическое определение
Геометрическое определение вероятности может быть использовано в том случае, когда вероятность попадания случайной точки в любую часть области пропорциональна мере этой области (длине, площади, объему и т. д.) и не зависит от ее расположения и формы.
Если пространство непрерывное и состоит из равновозможных элементарных исходов, то для любого события
(1.2)
где под mes (от английского measure), обозначена любая геометрическая мера этого пространства (длина, площадь, объем и т. д.).
Геометрическая вероятность (1.2), так же как и классическая (1.1), равна отношению геометрической меры области, благоприятной наступлению события А, к мере всей области .
Пример 3. В точке С, положение которой на телефонной линии связи KL длины z равновозможно, произошел разрыв. Определить вероятность того, что точка С удалена от точки К на расстояние, не меньшее l (событие А).
Решение. Представим линию связи в виде отрезка KL, длина которого равна z. Тогда = l, = z l.
Обрыв равновозможен на любой единице длины отрезка CL. Тогда по геометрическому определению искомая вероятность определится как отношение длин области, благоприятной наступлению события, к длине всей области, т.е. отрезка KL.
2. Теорема сложения вероятностей
В любых сколь угодно сложных расчетах по теории вероятностей в той или иной форме используют две теоремы: теорему сложения и теорему умножения вероятностей.
Теорема 1. Вероятность суммы конечного числа попарно несовместных событий равна сумме их вероятностей.
Доказательство. Докажем теорему для двух событий, т.е. покажем, что если С=А+В и АВ= , то
Р(С)=Р(А+В)=Р(А)+Р(В), (1.3)
Для простоты рассуждений будем опираться на классическое определение вероятности. Пусть множество элементарных исходов испытания или опыта дискретно и состоит из n равновозможных исходов, т. е. = n; пусть событию А благоприятствуют m исходов, = m; событию В – m исходов, = m . Так как А и В несовместны, то среди исходов, благоприятствующих наступлению этих событий, нет совпадающих. Поэтому событию С=А+В будет благоприятствовать m + m исходов, = m + m. Тогда по классическому определению
Последнее выражение можно также представить в виде
Таким образом, соотношение (1.3) доказано.
Методом математической индукции можно показать справедливость теоремы для любого конечного числа попарно несовместных событий:
если ,
Пример 4. Мишень состоит из концентрических окружностей. Вероятность попадания в первый, центральный круг – 0,05, во второй (средний) – 0,20 и наружное кольцо – 0,50. Какова вероятность попадания в мишень при одном выстреле?
Решение. Искомое событие A произойдет, если произойдет хотя бы одно из событий: A1={попадание в первый, центральный круг}, A2 ={попадание в среднее кольцо}, A3 = {попадание в наружное кольцо} , т. е. событие A представимо в виде суммы событий A1 ,A2 ,A3 , причем слагаемые события в этой сумме попарно несовместны и вероятности их наступления заданы. Тогда по теореме сложения получим
P(A) = P(A1 + A2 + A3) = P(A1)+ P(A2)+ P(A3) = 0,05+ 0,20+ 0,50 = 0,75.
Из теоремы сложения следует практически важное следствие или свойство вероятностей противоположных событий.
Следствие. Вероятности двух взаимно противоположных событий дополняют друг друга до единицы: , или вероятность события , противоположного событию A, равна
, (1.4)
Действительно, так как A + = и A = , то по формуле (1.3) P(A + ) = P(A) + P() = P( ) =1. Отсюда P() =1 P(A).
Теорема 2. (обобщенная теорема сложения). Если событие С представимо в виде суммы двух событий А и В, где A и В – любые события из одного поля, то
Р(С)=Р(А+В)=Р(А) + Р(В) – Р(АВ), (1.5)
3. Теорема умножения вероятностей
В основе определения вероятности события лежит некоторый комплекс условий G, который остается неизменным при всех вариантах условий испытаний. Но, кроме этого, для того, чтобы установить характер соотношений между событиями А и В, приходится наблюдать происхождение или непроисхождение события А то без всяких дополнительных условий, то при условии, что уже произошло событие В. Если вероятность события А подсчитывается без каких-либо дополнительных условий или ограничений, то ее называют безусловной вероятностью данного события и записывают Р(А). Вероятность события А, найденная при условии, что произошло некоторое другое событие В, называется условной и обозначается Р(А/В) либо .
Условные вероятности обладают всеми свойствами безусловных вероятностей и находятся по тем же формулам.
Теорема умножения вероятностей. Вероятность произведения двух событий А и В равна произведению безусловной вероятности одного из этих событий на условную вероятность другого, при условии, что первое произошло:
Р(АВ)=Р(А)Р(В/А)=Р(В)Р(А/В) (1.7)
Доказательство.
Для простоты будем также опираться на классическое определение вероятности. Пусть множество конечно и состоит из n равновозможных, попарно несовместных исходов испытания или опыта, = n; событие А состоит из m исходов, = m; m n; событие В – из k исходов, = k, k n; событие АВ – из r исходов, = r, r n, r k, r m, т. е. событиям А, В и АВ будут благоприятствовать m, k и r равновозможных исходов соответственно. Найдем условную вероятность события А при условии, что событие В произошло: Р(А/В)=r/k.
Поделим числитель и знаменатель этой дроби на n.
Отсюда Р(АВ)=Р(В)Р(А/В).
В наших рассуждениях мы могли поменять события А и В. Меняя ролями А и В, получим Р(АВ)=Р(А)Р(В/А). Таким образом, равенство (1.7) доказано. Теорема умножения распространяется и на большее, чем два число сомножителей
(1.8)
Пример 5. На станции отправления имеется 8 заказов на отправку товара: пять – внутри страны, а три – на экспорт. Какова вероятность того, что два выбранных наугад заказа окажутся предназначенными для потребления внутри страны?
Решение. Используем для решения задачи формулу умножения вероятностей (1.7) и непосредственный подсчет по классическому определению, т. е. решим ее двумя способами.
1-й способ: событие А = {первый взятый наугад заказ – внутри страны}, В = {второй, тоже взятый наугад заказ – внутри страны}. Нам необходимо найти вероятность Р(АВ), поэтому по формуле (1.7)
Р(АВ)=Р(А)Р(В/А)=(5/8)(4/7)=5/14.
2-й способ: событие А ={два выбранных наугад заказа – внутри страны}. По классическому определению
.
4. Случайные события
4.1 Случайные события и величины, их основные характеристики
При анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть:
продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания;
деньги, с единственным способом описания - суммой;
информация, в виде сообщений о событиях в системе и значениях описывающих ее поведение величин.
Начнем с того, что обратим внимание на тесную (системную!) связь показателей продукции и денег с информацией об этих показателях. Если рассматривать некоторую физическую величину, скажем - количество проданных за день образцов продукции, то сведения об этой величине после продажи могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует будущее - а сколько этой продукции будет продано за день? Этот вопрос совсем не праздный - наша цель управлять, а по образному выражению управлять - значит предвидеть.
Итак, без предварительной информации, знаний о количественных показателях в системе нам не обойтись. Величины, которые могут принимать различные значения в зависимости от внешних по отношению к ним условий, принято называть случайными (стохастичными по природе).
Для случайных величин (далее - СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ - дискретная или непрерывная это делается по разному.
Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений.
Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных условиях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению - которое и есть вероятность этого значения.
К понятию вероятности значения дискретной СВ можно подойти и иным путем - через случайные события. Это наиболее простое понятие в теории вероятностей и математической статистике - событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1 называют достоверными, а с вероятностью 0 - невозможными.
Отсюда простое правило: для случайного события X вероятности P(X) (событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1.
Если мы наблюдаем за сложным событием - например, выпадением чисел 1..6 на верхней грани игральной кости, то можно считать, что такое событие имеет множество исходов и для каждого из них вероятность составляет 1/6 при симметрии кости.
Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1.
Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины.
Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные:
Таблица 1
Грани |
1 |
2 |
3 |
4 |
5 |
6 |
Итого |
Наблюдения |
140 |
80 |
200 |
400 |
100 |
80 |
1000 |
Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) - гистограммой.
Рис. 1.
Какую же информацию несет такая табличка или соответствующая ей гистограмма?
Прежде всего, всю - так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными.
С другой стороны - очень мало, особенно в цифровом, численном описании СВ. Как, например, ответить на вопрос: - а сколько в среднем мы выигрываем за одно бросание кости, если выигрыш соответствует выпавшему числу на грани?
Нетрудно сосчитать:
1·0.140+2·0.080+3·0.200+4·0.400+5·0.100+6·0.080= 3.48
То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое.
Если же мы поставим вопрос иначе - оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданием случайной величины, которое в общем случае определяется как
{ 1}
где P(Xi) - вероятность того, что X примет свое i-е очередное значение.
Таким образом, математическое ожидание случайной величины (как дискретной, так и непрерывной) - это то, к чему стремится ее среднее значение при достаточно большом числе наблюдений.
Обращаясь к нашему примеру, можно заметить, что кость несимметрична, в противном случае вероятности составляли бы по 1/6 каждая, а среднее и математическое ожидание составило бы 3.5.
Поэтому уместен следующий вопрос - а какова степень асимметрии кости - как ее оценить по итогам наблюдений?
Для этой цели используется специальная величина - мера рассеяния - так же как мы усредняли допустимые значения СВ, можно усреднить ее отклонения от среднего. Но так как разности (Xi - Mx) всегда будут компенсировать друг друга, то приходится усреднять не отклонения от среднего, а квадраты этих отклонений. Величину
{ 2}
принято называть дисперсией случайной величины X.
Вычисление дисперсии намного упрощается, если воспользоваться выражением
{ 3}
т. е. вычислять дисперсию случайной величины через усредненную разность квадратов ее значений и квадрат ее среднего значения.
Выполним такое вычисление для случайной величины с распределением рис. 1.
Таблица 2
Грани(X) |
1 |
2 |
3 |
4 |
5 |
6 |
Итого |
X2 |
1 |
4 |
9 |
16 |
25 |
36 |
|
Pi |
0.140 |
0.080 |
0.200 |
0.400 |
0.100 |
0.080 |
1.00 |
Pi·X2·1000 |
140 |
320 |
1800 |
6400 |
2500 |
2880 |
14040 |
Таким образом, дисперсия составит 14.04 - (3.48)2 = 1.930.
Заметим, что размерность дисперсии не совпадает с размерностью самой СВ и это не позволяет оценить величину разброса. Поэтому чаще всего вместо дисперсии используется квадратный корень из ее значения - т. н. среднеквадратичное отклонение или отклонение от среднего значения:
{ 4}
составляющее в нашем случае . Много это или мало?
Сообразим, что в случае наблюдения только одного из возможных значений (разброса нет) среднее было бы равно именно этому значению, а дисперсия составила бы 0. И наоборот - если бы все значения наблюдались одинаково часто (были бы равновероятными), то среднее значение составило бы (1+2+3+4+5+6) / 6 = 3.500; усредненный квадрат отклонения - (1 + 4 + 9 + 16 + 25 + 36) / 6 =15.167; а дисперсия 15.167-12.25 = 2.917.
Таким образом, наибольшее рассеяние значений СВ имеет место при ее равновероятном или равномерном распределении.
Отметим, что значения Mx и SX являются размерными и их абсолютные значения мало что говорят. Поэтому часто для грубой оценки случайности данной СВ используют т. н. коэффициент вариации или отношение корня квадратного из дисперсии к величине математического ожидания:
Vx = SX/MX { 5}
В нашем примере эта величина составит 1.389/3.48=0.399.
Итак, неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации.
В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ - весами, расстояниями и т. п. Для них идея оценки среднего значения (математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие - для непрерывной СВ вопрос о том какова вероятность принятия нею конкретного значения обычно не имеет смысла - как проверить, что вес товара составляет точно 242 кг - не больше и не меньше?
Для всех СВ - дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто - надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне.
4.2 Взаимосвязи случайных событий
Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать P(X) и иметь ввиду, что вероятность того, что событие не произойдет, составляет
{ 6}
Самое важное при рассмотрении нескольких случайных событий (тем более в сложных системах с развитыми связями между элементами и подсистемами) - это понимание способа определения вероятности одновременного наступления нескольких событий или, короче, - совмещения событий.
Рассмотрим простейший пример двух событий X и Y, вероятности которых составляют P(X) и P(Y). Здесь важен лишь один вопрос - это события независимые или, наоборот взаимозависимые и тогда какова мера связи между ними?
Оценим вначале вероятность одновременного наступления двух независимых событий. Элементарные рассуждения приведут нас к выводу: если события независимы, то при 80%-й вероятности X и 20%-й вероятности Y одновременное их наступление имеет вероятность всего лишь 0.8·0.2 = 0.16 или 16%.
Итак - вероятность наступления двух независимых событий определяется произведением их вероятностей:
{7}
Перейдем теперь к событиям зависимым. Будем называть вероятность события X при условии, что событие Y уже произошло условной вероятностью P(X/Y), считая при этом P(X) безусловной или полной вероятностью. Столь же простые рассуждения приводят к так называемой формуле Байеса
{8}
где слева и справа записано одно и то же - вероятности одновременного наступления двух зависимых или коррелированных событий.
Дополним эту формулу общим выражением безусловной вероятности события X:
{9}
означающей, что данное событие X может произойти либо после того как событие Y произошло, либо после того, как оно не произошло - третьего не дано!
Формулы Байеса или т. н. байесовский подход к оценке вероятностных связей для простых событий и дискретно распределенных СВ играют решающую роль в теории принятия решений в условиях неопределенности последствий этих решений или в условиях противодействия со стороны природы, или других больших систем (конкуренции). В этих условиях ключевой является стратегия управления, основанная на прогнозе т. н. апостериорной (послеопытной) вероятности события
{10}
Прежде всего, еще раз отметим взаимную связь событий X и Y - если одно не зависит от другого, то данная формула обращается в тривиальное тождество. Кстати, это обстоятельство используется при решении задач оценки тесноты связей - корреляционном анализе. Если же взаимосвязь событий имеет место, то формула Байеса позволяет вести управление путем оценки вероятности достижения некоторой цели на основе наблюдений над процессом функционирования системы - путем перерасчета вариантов стратегий с учетом изменившихся представлений, т. е. новых значений вероятностей.
Дело в том, что любая стратегия управления будет строиться на базе определенных представлений о вероятности событий в системе - и на первых шагах эти вероятности будут взяты из головы или в лучшем случае из опыта управления другими системами. Но по мере жизни системы нельзя упускать из виду возможность коррекции управления - использования всего накапливаемого опыта.
4.3 Схемы случайных событий и законы распределения случайных величин
Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ.
Эти распределения иногда называют теоретическими, поскольку для них разработаны методы расчета всех показателей распределения, зафиксированы связи между ними, построены алгоритмы расчета и т. п.
Таких, классических законов распределений достаточно много, хотя штат их за последние 30..50 лет практически не пополнился. Необходимость знакомства с этими распределениями для специалистов вашего профиля объясняется тем, что все они соответствуют некоторым теоретическим схемам случайных (большей частью - элементарных) событий.
Как уже отмечалось, наличие больших массивов взаимосвязанных событий и обилие случайных величин в системах экономики приводит к трудностям априорной оценки законов распределений этих событий или величин. Пусть, к примеру, мы каким-то образом установили математическое ожидание спроса некоторого товара. Но этого мало - надо хотя бы оценить степень колебания этого спроса, ответить на вопрос - а какова вероятность того, что он будет лежать в таких-то пределах? Вот если бы установить факт принадлежности данной случайной величины к такому классическому распределению как т. н. нормальное, то тогда задача оценки диапазона, доверия к нему (доверительных интервалов) была бы решена безо всяких проблем.
Доказано, например, что с вероятностью более 95% случайная величина X с нормальным законом распределения лежит в диапазоне - математическое ожидание Mx плюс/минус три среднеквадратичных отклонения SX.
Так вот - все дело в том к какой из схем случайных событий классического образца ближе всего схема функционирования элементов вашей большой системы. Простой пример - надо оценить показатели оплаты за услуги предоставления времени на междугородние переговоры - например, найти вероятность того, что за 1 минуту осуществляется ровно N переговоров, если заранее известно среднее число поступающих в минуту заказов. Оказывается, что схема таких случайных событий прекрасно укладывается в т. н. распределение Пуассона для дискретных случайных величин. Этому распределению подчинены почти все дискретные величины, связанные с так называемыми редкими событиями.
Далеко не всегда математическая оболочка классического закона распределения достаточно проста. Напротив - чаще всего это сложный математический аппарат со своими, специфическими приемами. Но дело не в этом, тем более при повальной компьютеризации всех областей деятельности человека. Разумеется, нет необходимости знать в деталях свойства всех или хоть какой-то части классических распределений - достаточно иметь в виду саму возможность воспользоваться ими.
Таким образом, при системном подходе к решению той или иной задачи управления (в том числе и экономического) надо очень взвешено отнестись к выбору элементов системы или отдельных системных операций. Не всегда укрупнение показателей обеспечит логическую стройность структуры системы - надо понимать, что заметить близость схемы событий в данной системе к схеме классической чаще всего удается на самом элементарном уровне системного анализа.
Завершая вопрос о распределении случайных величин обратим внимание на еще одно важное обстоятельство: даже если нам достаточно одного единственного показателя - математического ожидания данной случайной величины, то и в этом случае возникает вопрос о надежности данных об этом показателя.
В самом деле, пусть нам дано т. н. выборочное распределение случайной величины X (например - ежедневной выручки в $) в виде 100 наблюдений за этой величиной. Пусть мы рассчитали среднее Mx и оно составило $125 при колебаниях от $50 до $200. Попутно мы нашли SX, равное $5. Теперь уместен вопрос: а насколько правдоподобным будет утверждение о том, что в последующие дни выручка составит точно $125? Или будет лежать в интервале $120..$130? Или окажется более некоторой суммы - например, $90?
Вопросы такого типа чрезвычайно остры - если это всего лишь элемент некоторой экономической системы (один из многих), то выводы на финише системного анализа, их достоверность, конечно же, зависят от ответов на такие вопросы.
Что же говорит теория, отвечая на эти вопросы? С одной стороны очень много, но в некоторых случаях - почти ничего. Так, если у вас есть уверенность в том, что теоретическое распределение данной случайной величины относится к некоторому классическому (т. е. полностью описанному в теории) типу, то можно получить достаточно много полезного.
С помощью теории можно найти доверительные интервалы для данной случайной величины. Если, например, уже доказано (точнее - принята гипотеза) о нормальном распределении, то зная среднеквадратичное отклонение можно с уверенностью в 5% считать, что окажется вне диапазона (Mx - 3·Sx)......(Mx+3·Sx) или в нашем примере выручка с вероятностью 0.05 будет $90 или $140. Надо смириться со своеобразностью теоретического вывода - утверждается не тот факт, что выручка составит от 90 до 140 (с вероятностью 95%), а только то, что сказано выше.
Если у нас нет теоретических оснований принять какое либо классическое распределение в качестве подходящего для нашей СВ, то и здесь теория окажет нам услугу - позволит проверить гипотезу о таком распределении на основании имеющихся у нас данных. Правда - исчерпывающего ответа Да или Нет ждать нечего. Можно лишь получить вероятность ошибиться, отбросив верную гипотезу (ошибка 1 рода) или вероятность ошибиться приняв ложную (ошибка 2 рода).
Даже такие обтекаемые теоретические выводы в сильной степени зависят от объема выборки (количества наблюдений), а также от чистоты эксперимента - условий его проведения.
ЗАКЛЮЧЕНИЕ
Теория вероятностей – это математическая наука, изучающая математические модели массовых случайных явлений. В теории вероятностей используются результаты и методы многих областей математики (комбинаторики, математического анализа, алгебры, логики и т. п.). Однако теория вероятностей обладает некоторым своеобразием, поскольку она очень тесно связана с различными приложениями, причем приложения эти не столь привычны, как, например, приложения алгебры или дифференциальных уравнений. Задачи теории вероятностей также необычны и часто имеют нематематическую постановку. Это в первую очередь объясняется тем, что зарождение теории вероятностей связано с комбинаторными задачами азартных игр. Азартные игры трудно считать серьезным занятием. Но именно они привели к задачам, которые не укладывались в рамки существовавших математических соотношений и стимулировали тем самым поиск новых понятий, подходов и идей.
Подобно другим математическим наукам, теория вероятностей развивалась из потребностей практики и представляла собой прикладную дисциплину. В связи с этим ее понятия и выводы имели характерные черты тех областей знаний, в которых они были получены. Лишь постепенно выкристаллизовалось то общее, что присуще вероятностным схемам, независимо от области их приложения и что позволило превратить теорию вероятностей в надежный, точный и эффективный метод познания.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 1998.
2. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1972, 1977.
3. Ежова Л.Н. Теория вероятностей и математическая статистика: Основы математики для экономистов. Вып. 9: Учеб. Пособие. – Иркутск: Изд-во ИГЭА, 2000.
4. Колемаев В.А., Староверов О.В., Турундаевский В.Б. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1991.
5. Теория вероятностей: Учебное пособие / Ежова Л.Н., Абдуллин Р.З., Калашникова Л.С., Никулина С.И., Леонова О.В.. – Иркутск: изд-во ИГЭА. – 1996.
6. Анализ и диагностика финансово-хозяйственной деятельности предприятия. Табурчак П.П., Викуленко А.Е., Овчинникова Л.А. и др.: Учеб. пособие для вузов / Под ред. П.П. Табурчака, В.М. Туина и М.С Сапрыкина. - Ростов н/Д: Феникс, 2002.
7. Баканов М.И., Шеремет А.Д. Теория экономического анализа: Учебник. - 4- изд., доп. и перераб. - М.: Финансы и статистика, 2001.
8. Бамина О.Э., Спирин А.А. Общая теория статистики. Изд-во Финансы и статистика, 2005. 440 с.
9. Бочаров.В.Б. Финансовый анализ. - СПб: Питер, 2004. - 240 с.
10. Гинсбург А.И. Экономический анализ. - Спб.: Питер, 2003. - 480 с.
11. Ефимова М.Р., Румянцев В.Н., Петрова Е.В. Общая теория статистики. Учебник. М.: Инфра-М, 2005, с. 94.
12. Завьялова З.М. Теория экономического анализа. Курс лекций. - М.: Финансы и статистика, 2002.