Зарождение и вызревание инженерной деятельности. Инженерная деятельность в области информатики
СОДЕРЖАНИЕ: Сущность инженерной деятельности и ее зарождение. Характер и содержание технической деятельности на ранних стадиях человеческой истории. Факторы вызревания инженерного труда и его функции. Прошлое и настоящее инженерной деятельности в области информатики.Реферат на тему:
Зарождение и вызревание инженерной деятельности. Инженерная деятельность в области информатики
Выполнила студентка гр. МБ-10В
Бирюкова Валерия
2010
Зарождение и вызревание инженерной деятельности. ее сущность и функции
В истории становления и развития производительных сил общества на различных этапах проблема инженерной деятельности занимает особое место. Инженерное дело прошло довольно непростой, исторически длительный путь становления. История материальной культуры человечества знает немало примеров удивительного решения уникальных инженерных задач еще на довольно ранних этапах развития человеческого общества. Если мы обратимся к истории создания знаменитых семи чудес света, то убедимся в наличии оригинального решения конкретных инженерных проблем.
Семь чудес света получили свое название во времена античности как сооружения, поражающие своим великолепием, размерами, красотой, техникой исполнения и оригинальностью решения инженерных проблем. К ним относятся: египетские пирамиды, появившиеся почти 5 тыс. лет назад (28 в. до н.э.), имя одного из первых зодчих, решивших ряд инженерных проблем при их сооружении, было Имхотен; храм Артемиды Эфесской (V в. до н.э.); мавзолей в Галикарнасе; висячие сады Семирамиды, Фаросский маяк (ІІІ в. до н.э.), создателем этого чуда был Сострат; Зевс Олимпийский (V в. до н.э.), творцом которого являлся прославленный скульптор Фидий, а также Колосс Родосский (ІV в. до н.э.), сооруженный известным скульптором Харесом. Имеются и другие свидетельства гениального решения инженерных проблем в глубокой древности. Профессия инженера, представителя инженерного цеха по праву может отстаивать место на одной ступени пьедестала с Охотником, Врачом, Жрецом. Вместе с тем история материальной культуры иногда отрицает наличие инженера в обществе древности, а в этой связи и наличия и целенаправленной инженерной деятельности так, как мы понимаем эту деятельность сегодня, как она наполнена в век электричества, электронно-вычислительных машин, спутников, межконтинентальных воздушных лайнеров и ракет. Но некоторое отрицание инженера и инженерной деятельности на ранних ступенях развития общества еще не означает отрицания инженерной деятельности вообще при решении конкретных задач. Она в различных формах существовала в человеческой истории и существовала вполне активно. Целью настоящей лекции является показ процесса зарождения и становления инженерной деятельности, ее эволюции, появления инженера в производительных силах как обязательной профессии на пути преобразования этих сил, а также рассмотрение внешних и внутренних функций инженерной деятельности в современных условиях.
1. Сущность инженерной деятельности и ее зарождение.
2. Факторы вызревания инженерного труда и его функции.
Как уже отмечалось во введении, на заре становления общества не существовало в явном виде инженерной специальности (это результат позднейшего общественного разделения труда), ни тем более инженерного цеха, касты, корпорации или, пользуясь строгим научным термином, - социально-профессиональной группы. Но за многие века, даже тысячелетия до того, как общественный способ производства сделал возможным и необходимым появление инженеров в полном смысле этого слова, перед людьми возникали инженерные задачи и находились индивиды, способные их решать. Ведь человеческая цивилизация основана на преобразовании природного мира с помощью орудий труда, то есть совокупности разнообразных технических средств. История их создания - одновременно и история инженерной деятельности. Забегая вперед, скажем что на сегодняшний день формула Инженер - создатель новой техники несколько устарела. Она оправдывает себя только для узкого интервала значений терминов инженер, инженерный труд, инженерная профессия, оставляя вне поля зрения поистине необозримое пространство современных (не говоря уже о будущих) задач, проблем, функций инженерной деятельности. Но в ретроспективном путешествии в прошлое инженера, к истокам могучего потока технического прогресса главными ориентирами для нас послужат технические новшества. История инженерной деятельности относительно самостоятельна; ее нельзя свести ни к истории техники, ни к истории науки. Корни ее теряются в глубине прошедших тысячелетий. Зачастую мы можем догадываться, какого упорства и таланта требовал каждый новый шаг в освоении и преобразовании мира, какие творческие коллизии, взлеты и крушения скрыты от нашего взгляда дымкой веков. Данные археологических раскопок позволяют лишь очень приблизительно реконструировать уровень знаний и умений, доступных творцам техники далекого прошлого. Судить об особенностях инженерной деятельности давно ушедших поколений приходится по ее результатам, сохранившимся в натуре или хотя бы в описании. И техника может рассказать о своих создателях очень многое. Кстати, возникает вопрос, что такое техника? Слово это настолько вошло в обиход, что задавать вопрос о его значении кажется, на первый взгляд, чуть ли не бестактным обвинением в невежестве. Но оказывается, что на самом деле термин этот воспринят нашим обыденным сознанием в довольно расплывчатом виде. Существует более 30 официальных определений. На заданный, что называется, в лоб вопрос Что такое техника? собеседник обычно начинает мяться, произносит: Техника - ну, это, в общем… И дальше - в зависимости от уровня знаний и склада мышления, умения формулировать и т.п. Например: Техника - это что-то громоздкое, надвигающееся, бездушное - определение поэта. Техникой является все, что связано с металлом, - точка зрения инженера. Техника - область знания, отражающая принципы и законы создания и действия машин, приборов, механизмов, - формулировка ученого. Так что же такое техника? Большинство современных исследователей считают, что под техникой надо понимать совокупность искусственно созданных средств деятельности людей. Техника создается и применяется в целях получения, передачи и превращения энергии, воздействия на предметы труда при создании материальных и культурных благ, сбора, хранения, переработки и передачи информации, исследования законов и явлений природы и общества, передвижения, управления обществом, обслуживания быта, обеспечения обороноспособности и ведения войн. По своему происхождению именно техническая деятельность стала одним на первых видов социальной деятельности. Чтобы выжить, добыть пищу, защитить себя от диких животных, первобытные люди вынуждены были прибегнуть к помощи орудий. Переход к труду, основанному на применении орудий, первых примитивных технических средств, был необходим. Все доступные нам факты борьбы рода человеческого за выживание подтверждают, что техническое (технологическое) направление и характер цивилизации являются не случайностью и не ошибкой общественного развития, а единственно возможным его путем. Изготовление орудий, переход к производству - это та грань, тот скачок, который позволил человечеству преодолеть пропасть, отделяющую животный мир от мира цивилизации. Длился этот скачок невообразимо долго: по сравнению с ним превращение желудя в вековой дуб кажется мгновенным взрывом. Достаточно сказать, что возраст обнаруженных в ходе археологических раскопок возле озера Рудольф (Кения) первых искусственных орудий - они изготавливались из гальки - составляет 2 миллиона 600 тысяч лет! У этих заостренных кусков камня нет еще даже определенной формы. Но нет и сомнения, что они создавались целенаправленно. Об этом говорит сходство приемов обработки. Невзрачные камешки, покоящиеся на музейных стендах, обладают огромным историческим весом. Это зародыши мощного арсенала современной техники и технологии, материальной и духовной культуры человечества. Наряду с прочими, эти зародыши несут и ген инженерной деятельности. Ведь прежде чем техника, пусть даже самая что ни на есть простейшая, будет использована, она должна быть создана. Если даже впоследствии вещь, орудие труда изготавливались миллиарды раз, то когда-то же они были созданы впервые. Стало быть, неким далеким предком были не просто подмечены и использованы полезные качества природного предмета, но и найден путь к тому, как эти качества изменить, приспособить для удовлетворения человеческих нужд. А это уже предполагает элемент технического творчества, крупицы инженерного мышления. Конечно, изрядным преувеличением было бы видеть в косматом антропоиде, раскалывающем голыши о прибрежные скалы, прямого, хотя бы и отдаленного, предшественника современного специалиста - химика или электронщика. Однако первичная схема инженерной деятельности техническая идея - изделие может быть обнаружена на самом раннем этапе становления техники. Характер и содержание технической деятельности на ранних стадиях человеческой истории менялись крайне медленно; наверняка, технические новинки сотни раз находились и сотни раз утрачивались, погибали вместе с их изобретателями. Однако общее направление развития техники не вызывает сомнений. Тенденция к совершенствованию приемов труда, увеличению их эффективности явственно прослеживается хотя бы на примере количественного нарастания операций первобытной технологии. Так, первые галечные орудия получали тремя - десятью ударами, древнейшие ручные рубила - десятью - тридцатью ударами, ручные рубила правильной геометрической формы пятьюдесятью - восьмьюдесятью ударами. Изготавливая галечные сколы, наши далекие предки применили одну операцию - обивку, а для производства рубила нужны были уже три операции: отщепление заготовки, обивка, ретушь. К. Маркс указывал, что вообще, когда процесс труда достиг хотя бы некоторого развития, он нуждается уже в подвергшихся обработке средствах труда. Употребление и создание средств труда, хотя и свойственны в зародышевой форме некоторым видам животных, составляют специфически характерную черту человеческого процесса труда… [1] Шли тысячелетия, и вместе с ними неуклонно шел дальше и дальше технический прогресс. На границе между верхним и нижним древнекаменным веком (палеолитом), примерно 40-30 тысяч лет назад, завершается предыстория человеческого общества и начинается его история. Этот переход совершился во многом благодаря накопленным техническим достижениям. В производственной деятельности человек освоил много новых пород камня, научился изготавливать свыше двадцати видов различных каменных орудий (резцов, сверл, скобелей и т.п.). Были созданы гарпун и копьеметалка. Но улучшение традиционных приемов обработки камня уже не повышало эффективности производимых орудий. Требовалось принципиально новое решение. И оно было найдено. Были изобретены и - как мы иногда говорим - нашли широкое применение в практике так называемые вкладышевые орудия. Апофеозом инженерной мысли каменного века стал лук. Человек, сообразивший, как использовать потенциальную энергию согнутой палки, натянувший на нее тетиву из жил животных и заостривший тонкую стрелу, совершил эпохальное техническое открытие. Лук, тетива и стрела, - по мнению Ф. Энгельса, - составляют уже очень сложное орудие, изобретение которого предполагает долго накапливаемый опыт и более развитые умственные способности, следовательно, и одновременное знакомство со множеством других изобретений [2]. Стоящие перед создателем лука и стрел сложности были двоякого рода: во-первых, необходимо было объединить разные технические элементы в одном орудии; во-вторых, осмыслить и доказать преимущества нового приспособления. Отметим, что преимущества лука по сравнению с прежними видами оружия были настолько очевидны, что он довольно скоро получил признание у разных племен и народов. И результат быстрого внедрения не замедлил сказаться - жизнь охотничьих племен заметно облегчилась, освободилось время для других видов деятельности. Широкомасштабное применение лука, вкладышевых орудий, шлифованных топоров, тесел, мотыг, долот и прочих технических достижений новокаменного века (неолита) подготовило производственную революцию, разрешившую противоречие между возросшим уровнем производительных сил и традиционной для первобытной общины уравниловкой в распределении. Сущность так называемой неолитической революции - в переходе от охоты к земледелию и скотоводству. Родовой строй отжил свой век. Он был взорван разделением труда и его последствием - расколом общества на классы [3]. Нас, впрочем, интересует не столько историческое или социально-экономическое значение технических новшеств первобытнообщинного строя, сколько процесс накопления технико-технологических открытий и изобретений как отражение роста творческой мощи человека. В период неолита достоянием человечества сделались новые приемы обработки материалов - пиление, шлифование, сверление, появились составные орудия, был приручен огонь. Трудно, точнее говоря - невозможно, представить, что эти элементы материально-технической культуры возникли без целенаправленной умственной работы их создателей. Можно согласиться, что познание, техническое проектирование и организация производства не были расчленены и не существовали вне повседневной рутинной деятельности. Производство идей, представлений, сознания первоначально непосредственно вплетено в материальную деятельность и в материальное общение людей, в язык реальной жизни. Образование представлений, мышление, духовное общение людей являются здесь еще непосредственным порождением материального отношения людей [4]. Однако генетическая связь того, что человек делал, с тем, что он задумывал, планировал сделать, не заслоняет такого факта, что для решения технических проблем периода между дикостью и варварством нужен был довольно высокий уровень аналитико-синтетических свойств мышления. Поэтому уже применительно к первобытнообщинному способу производства мы вправе говорить о существовании инженерной деятельности в ее неявной форме. Обозначим ее как доинженерную деятельность. Накопление прибавочного продукта, ставшее возможным благодаря успехам техники, повело к дальнейшему расслоению общества. Появилось рабство, сменившее древнюю общину. Возникли классы и государство. Ширилась специализация труда. Если в ранние периоды земледелия семья изготавливала орудия труда, оружие, утварь самостоятельно и каждый дом, подворье были одновременно и мастерской, то при становлении рабовладельческого способа производства происходит обособление ремесел. Это второе крупное общественное разделение труда порождает ремесленника - человека, занятого главным образом технической деятельностью. Материально-технической основой перехода от домашнего ремесла к специализированному ремесленному производству послужили ирригационное земледелие и распространение металлических орудий. Если первые немногочисленные медные предметы - шильца, проколки, бусинки - найдены при раскопках культурного слоя VII-VI тысячелетий до н.э., то в V тысячелетии до н.э. орудия из меди и ее сплавов встречаются все чаще и чаще. Использование цветных металлов в хозяйственной деятельности стало предпосылкой изобретения колесного транспорта и гончарного круга, а также бронзового плуга. В рабовладельческую эпоху были сделаны и многие другие технические открытия: налажено производство стекла, изразцов, шелковой ткани. Однако центром технической (и инженерной) деятельности было строительное дело. Возникновение древних городов, которые становились центрами ремесленного производства, возведение культовых и ирригационных сооружений, мостов, плотин, дорог требовало кооперации труда огромного количества людей. Колоссальные защитные сооружения были возведены вокруг Вавилона: город окружали три ряда стен, каждая из которых была толщиной 8-12 метров. Самая большая из египетских пирамид - усыпальница фараона Хуфу (Хеопса) - возвышается над пустыней на 150 метров. На ее постройку ушло около 2300 тыс. каменных блоков весом от 2 до 15 тонн каждый. Сто тысяч людей выполняли эту работу непрерывно в течение 20 лет. Древний историк Геродот свидетельствует, что в IV в. до н.э. в горах Ливии была сооружена плотина, изменившая русло Нила. Там, где раньше протекала река, был построен город Мемфис. Перечень великих свершений зодчих древности можно было бы продолжить. Но и из сказанного очевидно, что ни одно крупное и сложное сооружение древности не могло быть построено без детально разработанного проекта, требующего обособления целеполагающей деятельности. В процессе строительства технический замысел (проект) мог быть реализован только на основе совместного труда рабов. Именно так создавались первые инженерные сооружения, такие как городские системы и шахты Шумерийского государства, ирригационные каналы и пирамиды Египта. [5] Как же осуществлялась эта простейшая кооперация труда рабов? Явно недостаточно было номинально обладать властью над тысячами людей, чтобы суметь использовать их труд при возведении крепостей, дворцов, храмов. Заставить рабов мог, конечно, любой царек или рабовладелец. Но для того чтобы организовать трудовые усилия больших масс низкоквалифицированных работников, подчинить их единой задаче, требовался инженер. Архитектурное дело и строительство стали исторически первой областью производства, где возникла потребность в людях специально занятых функциями проектирования и управления (инженера). Сложный умственный труд, благодаря которому первоначальный технический замысел вызревал, обрастал конкретными деталями, становился проектом, не мог уже быть выполнен походя. Во-первых, для того чтобы продвинуться вперед в поиске архитектурной формы, сочетающей прочность, удобство и гармоничную соразмерность, нужно было проникнуть в тайны сделанного предшественниками, не копировать, а переосмыслить и обобщить их достижения. Во-вторых, новые, усложнившееся инженерно-строительные задачи не допускали решения на глазок. Они оказывались по плечу тому, кто способен был не только поймать за хвост жар-птицу конструктивной идеи, но и поместить ее в клетку конкретного расчета, рисунка, макета. А для этого следовало овладеть нехитрым - с позиций сегодняшнего дня, но достаточно обширным арсеналом специальных инженерных средств и инструментов. Во времена Древней Греции и Рима в распоряжении инженера-строителя различных конструкций были циркуль (его, кстати, знали еще вавилоняне), счетная доска - так называемый абак, нивелиры и другие простейшие геодезические приборы. Иными словами, для успешного решения древнеинженерных задач периода рабовладения требовался не только практический опыт, но и специальные знания и умения. И еще время, свободное от забот о хлебе насущном. Отделение умственного труда от физического и противопоставление их друг другу имели четко выраженную классовую окраску, поскольку досугом и материальными средствами для овладения элементами духовной культуры располагали лишь представители эксплуататорского класса. Соответственно и технические достижения служили одним из средств порабощения труда. Таким образом, материально-техническая и духовная культура человечества в эпоху рабовладения достигла такого уровня, что в отдельных ее сферах - строительстве и архитектуре - возникла потребность в профессиональном инженерном труде. Сквозь тысячелетия дошли до нас имена египетского жреца-архитектора Имхотепа (ок.2700 г. до н.э.), китайского гидростроителя Великого Юя (ок.2300 г. до н.э.), древнегреческого зодчего и скульптора Фидия - создателя афинского акрополя Парфенона (V в. до н.э.). Были ли они инженерами? И да, и нет. Ответ на этот вопрос неоднозначен, и вот почему. Для производства периода поздних рабовладельческих государств характерно появление сложных технических задач нового класса, решение которых предполагало обособление инженерно-технических и инженерно-управленческих функций. Здравый смысл подсказывает, что тех, кто эти функции выполнял, мы вправе назвать инженерами. Вместе с тем, видимо, следует заметить, что во-первых, функции инженерного труда не сводятся к двум названным выше, они гораздо шире. Во-вторых, деятельность первых инженеров опиралась главным образом на практические, опытные знания, а также на весьма примитивные технические средства; универсальным и, увы, малоэффективным технологическим приемом было массовое применение рабского труда. В-третьих, умственный труд, отпочковавшись от физического, долгое время оставался нерасчлененным. Так, в рабовладельческом обществе естествознание, не говоря уже о точных (тем более - о технических) науках, не успело выделиться в самостоятельную отрасль знания. Оно входило в общефилософскую систему, которая охватывала все множество знаний. Каждого инженера древности можно с не меньшим основанием именовать ученым, философом, писателем. Иначе говоря, любой инженер того времени заведомо обязан был быть мудрецом, любой мудрец одновременно владел инженерным делом. В качестве примера такой цельности вспомним древнегреческого мыслителя Фалеса или его ученика и последователя Анаксимандра (VI в. до н.э.) Исходя из приведенных выше соображений, точнее можно обозначить этот период становления инженерии как прединженерный. Хронологически его рамки довольно широки - от II-I тысячелетия до н.э. до XVII-XVIII вв. современного летоисчисления. Этот период неоднороден с точки зрения способа производства - рабовладельчество сменил феодализм, который в свою очередь, готовился уступить место капитализму. Менялось общественно-политическое устройство: возникали и гибли империи, возвышались и приходили в упадок нации, классы, религии. Развивалась техника и технология, рождались гениальные изобретения, создавались принципиально новые технические объекты, изделия, инструменты, приемы обработки материалов. Неизменным оставалось одно: основным создателем технических нововведений, субъектом технической деятельности по-прежнему оставался ремесленник. Достижения ремесленной деятельности древности и средневековья поражают воображение. Военное дело, сельское хозяйство, мореплавание, металлургическое, текстильное, бумажное производство - вот далеко не полный перечень областей деятельности, где в предынженерный период развития техники произошли технические революции. Вспомним, к примеру, порох, компас, книгопечатание - три изобретения, предваряющие буржуазное общество. [6] Многие технологические приемы древнего ремесла настолько уникальны, что не могут быть воспроизведены даже на основании современных научно-технических знаний. Объяснение им ищут порой в магии, вмешательстве пришельцев, разного рода чертовщине или в неких технических секретах, забытых, утраченных или находящихся под запретом религиозно-жреческих табу…Металлурги древней Индии поражают своим искусством. Индийцы давно научились плавить качественную сталь, делать отливки, чеканки. Вот уже почти 16 веков стоит восьмое чудо - делийская колонна диаметром у основания 0,4 метра и высотой 7,5 метра. Вес ее около шести тонн. Древние мастера сделали ее из отдельных кусков железа, сваренных в кузнечном горне. Колонна была воздвигнута в 415 году в честь царя Чандра Гупты II, скончавшегося в 413 году. Она посвящена богу Вишну. Первоначально находилась на Востоке страны и стояла перед храмом. В 1050 году царь Ананг Пола перевез ее в Дели. Самое удивительное, что колонна стоит сотни лет и не ржавеет. Время оказалось бессильным, на нее не действует ни ливни, ни тропическая жара. С давних времен стекались к ней толпы богомольцев - считалось, что тот, кто приложится к ней спиной и обхватит ее руками, будет счастлив. Много легенд о делийской колонне сложили люди. Это чудо даже приписывали творению рук инопланетных пришельцев. Но факты говорят о том, что ее делали люди из очень чистого металла (99,720 процента железа), и в этом весь секрет. Некоторые даже говорят, что современным металлургам до сих пор не под силу добиться подобного результата. Или еще одна загадка. В Китае есть гробница полководца Чжоу Чжу, умершего в конце II века. Когда исследователи провели спектральный анализ некоторых элементов металлического орнамента гробницы, то были удивлены. Оказалось, что древние мастера изготовили орнамент из сплава, который содержал 85 процентов алюминия. Однако производство алюминия сегодня немыслимо без электролиза, о котором в те времена никто и не слышал. Может быть китайские умельцы знали другой способ его получения, утерянный со временем? Или возьмем известных нам семь чудес света. Эти великие произведения древних мастеров поражали воображение современников своей монументальностью, простотой, оригинальностью решения инженерных проблем при создании этих классических чудес. Почти все они сделаны из камня. Трудно сказать, какое из чудес чудесней. Может быть, восьмое? Из металла? На заре своего существования человек сталкивался главным образом с камнем. Но однажды он нашел ярко окрашенный кусок медной руды. Самые первые металлические орудия человек изготовил именно из самородной меди в Египте в V тысячелетии до н.э. Несколько позже появилась бронза - сплав меди с оловом и другими металлами. Медь и ее сплав с оловом - бронза - долгое время были самыми распространенными металлами. Целая эпоха в развитии человечества называлась бронзовым веком. Шествие бронзы по планете было стремительным. Но вот загадка. Почему первые изделия из бронзы появились именно там, где совершенно не было необходимого сырья, и олово везли морем с Кавказа, Пиренейского полуострова и Британских (оловянных) островов к древним очагам цивилизации - в Египет и Двуречье? Видимо, металлургия пришла в Египет из какой-то другой страны. Бронзовый век принес человечеству новые загадки. Археологи до сих пор находят такие бронзовые изделия, которые смущают даже современных металлургов. Несколько лет тому при проведении археологических раскопок найдена бронзовая статуя лежащего Будды длиною около 10 метров. Ученые утверждают, что возраст этой уникальной отливки 7000-8000 лет. Процесс получения фасонных бронзовых отливок известен в Абиссинии, Египте, Индии, Древней Греции еще в IV-III тысячелетиях до н.э., т.е. литейное ремесло является одним из старейших на нашей планете. В национальном музее Египта в Каире хранится литая бронзовая скульптура одного из фараонов. Скульптуре около 2500 лет. Она отлита в рост человека и является пустотелой, со стенками толщиной от 15 до 30 миллиметров. Следует заметить, что никакой другой способ обработки металлов не может соперничать с литьем в деле создания произведений подлинного искусства. Это подтверждают века человеческой истории. Известна, например, крупная бронзовая статуя Афины Промахос на Акрополе высотой более 15 метров, изготовленная в мастерской знаменитого греческого скульптора Фидия около 460 года до н.э. Как все это было выполнено, какова технология решения этих проблем? В раскопках, относящихся еще к VIII-VI векам до н.э., археологи находят ножи, наконечники стрел, щиты и шлемы, изготовленные из меди и бронзы. Литейщики того времени, творившие на территории нынешнего Пенджаба, умели отливать серпы, пилы, копья, мечи, кинжалы, топоры. Как изготавливались эти предметы быта, орудия, украшения? Длинный и сложный путь к прогрессу прошел человек. От каменного топора - к меди и бронзе, к железу и металлам космической эры. Легенд, вымыслов, небылиц хватало в истории техники во все времена. Нельзя, конечно, всерьез относится к технологическим рецептам превращения меди в золото с помощью пепла василиска, размягчения драгоценных камней в крови козла или производства небьющегося стекла путем сбрызгивания его поверхности кровью дракона. Однако в тайниках души нет-нет да и шевельнется слабая надежда на чудо: Вдруг в глубине веков спрятано что-то удивительное, загадочное и такое нужное нам сегодня? Хочется верить, что тысячелетия назад в небе Древней Индии летали реактивные самолеты - виманы (тем более, что аппарат, построенный по указаниям древних рукописей, поднимался в воздух в 1895 году, за восемь лет до полета братьев Райт). Или что великий Леонардо да Винчи действительно создал водолазное снаряжение, в котором можно находится под водой как угодно долго…Что же могли и чего не могли старые мастера-ремесленники? Успехи ремесленничества в решении инженерно-технических задач неоспоримы, и все же этот путь развития технического творчества - тупиковый! Но не разобравшись в прошлом, нельзя осмыслить диалектику сегодняшних перемен в инженерном деле. Инженерную сторону технической деятельности периода ремесленного производства оценивают по-разному. Чаще всего источники технического творчества ремесленников видят в обыденном, хаотически накопленном знании, основанном на голом эмпиризме, простых обобщениях, наблюдениях и рецептах [7], т.е. в профессиональной сноровке. Случай, удача не нуждаются в письменных правилах. В то же время сторонники этого подхода признают, что совокупность взаимосвязанных процессов и приемов, эмпирически освоенных в тысячелетней практике их осуществления и изменения [8], есть реальное, хотя и не теоретическое знание, которое зафиксировано в виде практических навыков, расчетно-рецептуарных технологических схем. Другая концепция гласит, что наука и инженерия - прямые потомки практических искусств и ремесел, ибо осмысление опирающейся на эмпирические наблюдения практики создания и использования новых технических средств исторически было первой формой новых понятий технического знания [9]. Какой же из этих подходов ближе к истине? Как следует относится к ним? И в том, и в другом содержится рациональное зерно, однако оба они не отражают сути ремесла как способа технического творчества. Это явление со своей необычной логикой трудно поддается пониманию человека, воспитанного в духе научного мировоззрения. Донаучное знание - функциональный заменитель науки - не было результатом целенаправленного изучения природы. Законы мира, качества предметов осваивались непосредственно - чувствами, руками, а уж потом мышлением. Не было деления на знать и применять знания; теория и практика были неразделимы и с точки зрения, современной науки - неформализуемы. Интересен анализ истории бронзолитейного ремесла, проведенный историками. Человечество освоило металлы и их сплавы еще на заре цивилизации. Постепенно создавались технологические приемы, рецепты, инструменты. Возникли и письменные памятники, хранящие ремесла. Эти своеобразные технические энциклопедии, (в числе их авторов Плиний, Теофил Пресвитер, Бирингуччо) определяли нормы технической практики. Тогда возникает вопрос, чем же это не теория ремесла, чем же не наука? Дело в том, что подобные трактаты содержали не систему, а набор знаний, правильные рецепты соседствовали с ошибочными или фантастическими. И, кроме того, письменные сборники передавали лишь часть практического знания (отсюда и легенды о секретах древних мастеров).Показательна в этом отношении древнекитайская книга Чжоу ли (Записка для контроля работы ремесленников), хронологически относящаяся к III в. до н.э. В ее главе Као-гун-цзы (Шесть рецептов) приведены пропорции соотношения меди и олова в сплавах для различных изделий. Для колоколов и котлов, к примеру, требуется 1/6 часть олова и 5/6 меди, для мечей - 1/3 олова и 2/3 меди, для зеркал медь и олово берутся поровну и т.п. Казалось бы, все ясно. Бери, переплавляй, отливай. Не тут-то было! При наличии примесей более 2 % о собственных физических свойствах сплава меди и олова нужно забыть. Так что за коротенькой формулой рецепта прячется неописанная, но необходимая технологическая система очистки исходных материалов. Измерить количество инородных примесей в металле древний мастер не мог; тем не менее ему удавалось получить нужный сплав с соответствующими качествами. Каким образом? Успешные действия металлургов прошлого основывались на наглядно-чувственном способе технического мышления, внешней формой которого служил рецепт. По отношению к донаучному этапу технической деятельности понятие рецепта… наполняется существенно другим содержанием, чем по отношению к его современным нормам. Сейчас в нашем понимании рецепт или рецептурность есть действительно слепой эмпиризм, сборник сведений на все случаи жизни или правило обыденного сознания. В условиях же донаучного сознания рецепт, эта элементарная абстракция в форме числового отношения… образует некоторую первичную разновидность технического языка, возникающего как средство достижения определенной цели. Образно говоря, технологический рецепт времен средневековья представлял собой вершину айсберга, тогда как главная, невидимая нам часть ремесленного мастерства состояла в особом способе мировосприятия. Рабочему и в наши дни приходится иногда работать на глазок, скажем, определять температуру нагретого металла для его закалки. Так же действовали металлурги и кузнецы тысячелетия назад. Но если для ремесленников прошлого признаком этой готовности был сам цвет, то для современного рабочего цвет является прежде всего показателем нужного температурного режима. Абстракция вытесняет красочность в буквальном смысле слова. Для того чтобы действовать, рабочему наших дней недостаточно чувственных впечатлений, они должны быть соотнесены с абстрактным научным понятием. Необходимо подчеркнуть, что взаимодействия ремесла и науки, строго говоря, не было. Ремеслу, технической мысли средневековья требовались теоретические основания. Однако наука того времени была слишком умозрительной, слишком схоластичной, чтобы помочь технической практике перейти от методов рецептурных к методам инженерным. Подспорьем в решении технических задач служили лишь геометрия и искусство счета. Место науки в системе ремесленного знания занимал миф, сам по себе к научному знанию никакого отношения не имеющий. Но наличие хотя бы кокой-то объясняющей теории или квазитеории позволило впоследствии включить в техническое знание иную, научную объяснительную систему и тем самым сделать это знание инженерным. Следует заметить, что господство ремесленника в сфере технического творчества не было абсолютным. Хотя магистральным путем развития техники был путь проб и ошибок, параллельно ему из глубины веков тянется тропинка рационального осмысления технических проблем. Далеко не всех из тех, кто ее прокладывал, мы знаем поименно. В числе первых - Архит из Тарента (V-IV в. до н.э.), применивший математический аппарат к исследованию технических устройств; Евклид, создавший начертательную геометрию; Диоген Лаэртский и др. Невозможно не упомянуть о легендарной личности Архимеда (ок.287-212 гг. до н.э.). Вклад этого древнегреческого мыслителя в развитие технических основ цивилизации грандиозен; его деятельность мы вправе именовать инженерной без малейших скидок, оговорок. Достижения Архимеда в области рациональной и технической (прикладной) механики, как считают историки, представляют собой первую в истории теоретическую систему научно-технического знания, которая завершает развитие предпосылок технических теорий.Задачи теоретических исследований великого эллина вытекали из потребностей современной ему технической практики. К тому времени в военном деле, кораблестроении, ирригации, горнорудных работах назрели технико-технологические вопросы, ответить на которые с позиций прежнего опыта или обыденного здравого смысла было попросту невозможно. Массовое применение рабского труда перестало гарантировать успех в этих областях деятельности. И Архимед, взяв в качестве точки опоры математические абстракции, сумел с помощью рычага теории перевернуть мир современной ему техники. Конечной целью механики Архимеда было объяснение не мира вообще, а сравнительно ограниченного класса свойств тел и явлений, обнаруживаемых в процессе технической деятельности. Геометрические исследования свойств абстрактных фигур и тел не были для него самоцелью, как, по-видимому, для Евклида, - они были ориентированы на интересы практики и применение технического и естественного знания для решения научно-практических задач [10].Разумеется, задолго до рождения Архимеда безвестные изобретатели научились изготавливать и применять простейшие механизмы: рычаг, ворот, блок, винт, клин. Но принцип их действия, причины эффективности постигнуты не были. Чтобы объяснить, почему они работают, надо было выйти за пределы непосредственного опыта технической деятельности, проанализировать и обобщить данные. Архимед не только вывел из отдельных фактов систему научно-технического знания, но и блестяще применил ее к решению разнообразных инженерных задач. Следует особо отметить, что одностороннее изучение античности в течение длительного времени привело к тому, что понятие инженер связывалось только с именем Архимеда и вместо собственно инженерной деятельности рассматривались ее результаты: рудники, мосты, отопительные системы, дороги, театры, туннели, гидротехнические сооружения. В большой степени недооценены успехи инженерной деятельности в области измерительных приборов, тонкой механической аппаратуры, а также обыкновенной, но необходимой грузоподъемной техники. Несколько более известны те инженеры, труды которых о строительстве оборонительных сооружений дошли до потомков от которых ми. Остальные сочинения, имеются только в фрагментах, и все еще не опубликованы. Из этого письменного наследия явствует, что в эллинистическом государстве инженер занимал более почетное положение в обществе чем прежде в полисе (государствах-городах). В Римской империи инженеры также пользовались уважением. Витрувий (ІІ-я пол. I в. до н.э.), происходивший из бедной семьи, был приближенным императора Августа; Фронтин (ок.40-103 гг. н.э.) - римский наместник в Британии, верховный смотритель водоснабжения в Риме, принадлежал к сенатской аристократии. Из императорского стипендиального фонда для обучения инженерному делу (правление Александра Севера (200-235 гг. н.э. и Константина) оплачивались все расходы по обучению и содержанию математически одаренных юношей и мальчиков, в основном из небогатых семей. Диоклетиан (ок.245-313 гг. н.э.) содержал на государственном жаловании преподавателей механики и архитектуры. Профессиональная гордость инженера прослеживается в надписях на многочисленных постройках и надгробиях, начиная с IV в. до н.э. и по IV в. н.э. Впоследствии эта деятельность пресекалась, инженерное знание было почти полностью забыто вплоть до эпохи Возрождения. Именно тогда пламя инженерной мысли разгорается в полную силу, предыстория инженерного дела завершается и начинается его история. Переход от наглядно-эмпирического решения инженерно-технических проблем к научному, признание инженерного труда как профессии явились следствием принципиально нового способа общественной организации и разделения труда. Впрочем, рождение инженерной профессии стало результатом переворота во всех без исключения слоях и сферах общественной жизнедеятельности. Техника, способ производства, общественно-экономические отношения, политические институты, общественное сознание и психология, наука - все это необходимо было изменить, причем изменить самым решительным образом, прежде чем работа по решению инженерных проблем приобрела статус профессионального занятия в общественно - значимых масштабах. Каковы же основные факторы, способствовавшие вызреванию инженерного труда? Среди них можно назвать следующие:
Технологическая революция. Долгое время технологический способ производства, то есть основной тип связи между человеком и техническими средствами труда, оставался неизменным. Разумеется, орудия совершенствовались, усложнялись, становились эффективнее, но в целом в системе человек-техника человек был представлен ручным трудом, техника - инструментами для этого труда. Шли годы, складываясь в десятилетия, века, и наконец пришел день, когда гомотехнический автомат - ремесленник, вооруженный ручными инструментами, - перестал быть эффективным, исчерпал свой потенциал. Ремесленное производство уже не поспевало за растущими потребностями общества: Машинный труд как революционизирующий элемент непосредственно вызывается к жизни превышением потребности над возможностью удовлетворить ее прежними средствами производства.
1. Последним титаническим усилием ремесленничества удержаться на плаву было создание мануфактур, где самостоятельного мастера и универсальное орудие заменили частичное орудие и частичный рабочий. Парадокс заключается в том, что мануфактура, характеризующаяся ручным трудом, в то же время представляла как бы живой механизм, состоящий из цепочки рабочих, дополняющих работу друг друга, то есть была прообразом механизма машинного. Смысл перемен в системе человек-техника, обусловленный становлением машинного производства, заключался в передаче технике ряда человеческих функций; машина возникает с того момента, когда орудия превращаются, по словам К. Маркса, из орудий человеческого организма в орудия механического аппарата. Перемещение функции непосредственного управления орудиями от человека к машине ознаменовало собой не просто техническую революцию - такие революции местного значения происходят в технике в связи с любым крупным изобретением. Нет, произошел полный переворот во всей технической системе, после которого она начала развиваться по-новому, на основании новых принципов, новых технических форм и структур. Иными словами, возникновение машин определило начало нового исторического этапа в развитии техники - механизации производства. Технологическая революция шла к победе медленно, но неотвратимо. Вначале бастионы ремесленничества пали в ведущей отрасли промышленности позднего средневековья - ткачестве. Именно здесь возникли ткацкие станки - ремесленные машины, которые приводит в движение и которыми управляет один человек. Затем промышленная революция коснулась и других отраслей производства, получив в качестве подспорья универсальный тепловой двигатель - паровую машину. Развитие машиностроения, то есть производства машин с помощью машин, определило победу крупной машинной индустрии. Постепенно были технически перевооружены промышленность, транспорт, связь, а затем и сельское хозяйство. В результате революции утвердился новый технологический способ производства. Необходимость изобретать и применять в промышленных масштабах различного рода машины невольно породила потребность в специалистах, способных осуществлять эту деятельность не от случая к случаю, а постоянно. Таким образом, переворот в техническом компоненте производительных сил привел к видоизменению человеческого компонента - появились рабочие и инженеры. На последних, - как отмечал Маркс, - возлагалась задача работать преимущественно только головой.
2. Развитие общественно-экономических отношений. Машинная революция, изменяя характер и содержание труда, его технологию, организацию и структуру, способствует изменению производственных отношений. Вместе с происшедшей однажды революцией в производительных силах, которая выступает как революция технологическая, совершается также и революция в производственных отношениях. Система машин, сменяющая примитивную ручную технику ремесленничества, открывает простор для утверждения капиталистических отношений. Укрепление зародившейся в недрах феодализма капиталистической формы собственности, превращение ее в господствующую неразрывно связано с крупной машинной индустрией, преобразованием производства на новых, рациональных началах. Одновременно с положительным моментом - повышением производительности общественного труда - капитализм, развивающийся на своей собственной материально-технической базе, демонстрирует все свои мрачные стороны: рабочий становится придатком машины, завершается разделение участвующих в производстве групп на чистых и нечистых. Характерную черту капиталистического способа производства, - писал К. Маркс, - составляет как раз то, что он отрывает друг от друга различные виды труда, а стало быть, разъединяет также умственный и физический труд… и распределяет их между разными людьми. Инженер, появляясь в результате такого разделения труда, принимает на себя умственные функции сотен ограбленных в творческом отношении рабочих. Как представитель определенной социальной группы, он призван охранять и приумножать интересы правящего класса, подчиняя им всю производительную мощь общественных сил труда, заставляя служить капиталу открытые наукой законы природы. Инженерная профессия необходима капиталистическому способу производства, так как она становится надежным средством извлечения прибыли и к тому же служит орудием технологического закрепощения рабочего. Еще в трудах К. Маркса мы можем найти длинный перечень технических приспособлений и машин (шерсточесальные машины, ремешковый делитель вместо вращаемой рукой тростильной машины, автоматический аппарат для крашения и прополаскивания тканей и т.п.), изобретенных специально в связи с необходимостью подавления забастовок. Итак, место инженера в исторически определенной системе общественного производства - это одновременно его принадлежность и к определенной профессии, и к определенной социальной группе. Становление деятельности в социально институализированном виде происходит одновременно со становлением буржуазии, т.е. одновременно со становлением капитализма.
3. Переворот в мировоззрении, становление личности. Консерватизм средневекового мышления, усугубляемый догматическим религиозным мировоззрением, долгое время сдерживал развитие инженерной мысли. Изменять, конструировать мир в соответствии с заранее намеченными целями, личной волей вправе был только бог. Посягательство на творческую функцию бога, попытки усовершенствовать созданное им воспринимались с точки зрения религиозного фанатизма как ересь, грех. В христианском монотеизме беспредельно возносилась изобретательская деятельность бога и бесконечно принижался, даже отвергался человек, если он занимался этой деятельностью. Такое положение сохранялось довольно долго. Целый ряд изобретений веками не использовался или использовался тайно, с опаской ввиду их дьявольской природы. Господство средневековой парадигмы неприятия нового было низвергнуто лишь в эпоху Ренессанса. Замена бога-творца человеком-творцом, первоначально произошедшая в сфере художественного мышления, распространилась постепенно и на техническое творчество. Человек понемногу перестает воспринимать изобретательство как божественную прерогативу, становится, по выражению Леонардо да Винчи, свободен в изобретениях. Показательны в этом отношении изменения, характерные для научно-технических трудов времен Ренессанса и отличающие их от средневековых технических энциклопедий-сборников рецептов. В этих трудах даны не только предписания и последовательность действий, чтобы получить искомый результат (изделие, материал), но и предприняты попытки ответить на вопрос, почему надо поступать именно так. Пусть с содержательной стороны эти объяснения не выдерживают никакой критики, но появление их свидетельствует о переходе от механического, слепого копирования к целенаправленному изучению и использованию свойств природы, о повороте в мировоззрении и мышлении, от веры к познанию. Становлению инженерного творчества предшествовало также становление личности как индивидуального субъекта этого творчества. В средние века личности инженера в современном смысле слова, собственно говоря, не существовало; не только в труде, но и во всех без исключения сферах жизнедеятельности ремесленник был неотделим от цеховой общины. Индивидуальное Я почти без остатка растворялось в коллективной психологии, и автором технического нововведения выступал не отдельный человек, а коллективная личность-мастерская, личность-цех. До тех пор пока человек не умел и не мог осмыслить грань, отделяющую от его товарищей по мастерской, цеховой корпорации, ремесле, он не в состоянии был нарушить технические традиции, целенаправленно создавать новое в технике. И лишь эпоха буржуазных отношений, освободившая сознание людей от многовекового груза феодальных, религиозных, цеховых традиций, рождает обособленного от других, суверенного индивида, способного стать творцом.
4. Перемены в науке. ХVI-XVII вв. - это время, когда свежий ветер естественнонаучного познания врывается в затхлую атмосферу умозрительной науки.
Инженерная деятельность в области информатики: сущность, основы, прошлое и настояшее
Термин информатика, который используется для обозначения совокупности научных направлений, связанных с появлением компьютеров и их стремительным вхождением в ноосферу, относительно новый. Он получил права гражданства в начале 80-х гг. ХХ в. До этого, согласно определению Большой советской энциклопедии, информатика рассматривалась как дисциплина, изучающая структуру и общие свойства научной информации, закономерности ее создания, преобразования, передачи и использования в различных сферах человеческой деятельности. Подобное определение связывало информатику, прежде всего, с библиотековедением, библиографией, методами поиска информации в массивах документов. То, что стало сегодня называться информатикой, совершенно иное. Ближе всего содержание этого понятия подходит к тому, что в большинстве стран называется компьютерные науки. Они концентрируют свое внимание на различных аспектах, связанных с протеканием и использованием информационных процессов, с теми сотрудниками, которым представляется информация, и теми процедурами, которые применяются при ее переработке. В их область включается и разработка теорий машин - компьютеров - и методов их использования в системах переработки информации. Поэтому, говоря об истории информатики, по сути, надо излагать историю кибернетики, в том числе и отечественной, частично прикладной математики, а также вычислительной техники. Целью настоящей лекции является изложение истории зарождения механических, электромеханических и электронных устройств, нацеленных на выполнение массовых вычислений, зарождения, становления и развития кибернетики, а затем и информатики.
1. Сущность кибернетики - информатики, их основы.
2. Становление и развитие вычислительной техники как основы кибернетики - информатики.
Длительное время совокупность научных направлений, называемых теперь информатикой, именовались по-разному. Сначала объединяющим был термин кибернетика, затем общим названием той же области исследований стала прикладная математика. Ясно одно, что кибернетика - интегральное научное направление и как таковое в значительной степени базируется на знаниях и идеях, накопленных в рамках большого числа различных дисциплин, развивающихся независимо друг от друга. Необходимо выделить то, что можно называть кибернетики, рассмотреть состояние соответствующих знаний к моменту зарождения идей, которые допустимо именовать кибернетическими. Известно, что термин кибернетика дал обозначение науке об управлении общественными системами, который использовали греческий философ Платон (428-348 гг. до н.э.), французский физик А.М. Ампер (1775-1836), польский ученый Ф. Бронислав Тренповский (1808-1869) - ученик Гегеля. Он происходит от греческого кюбернетес, что первоначально значило рулевой, кормчий, но впоследствии стало обозначать и правитель над людьми. Платон в своих сочинениях в одних случаях называет кибернетикой искусство управления кораблем или колесницей, а в других - искусство править людьми. Примечательно, что римлянами слово кюбернетес было преобразовано в губернатор.А.М. Ампер в своей работе Опыт о философии наук, или Аналитическое изложение естественной классификации всех человеческих знаний, (первая часть вышла в 1834 г.) назвал кибернетикой науку о текущем управлении государством (народом), которая помогает правительству решать конкретные проблемы с учетом разнообразных обстоятельств в свете общей задачи - принести стране мир и процветание. Термин кибернетика вскоре был забыт, и возрожден в 1948 г. Норбертом Винером в качестве названия науки об управлении техническими, биологическими и социальными системами. Общепринятой датой рождения кибернетики, как самостоятельной науки, считается 1948 год - год публикации книги Н. Винера (1894-1964)Кибернетика, или управление и связь в животном и машине. Одна из основных идей книги - наличие аналогии в процессах управления и связи машин, живых организмов и сообществ, поскольку в них происходит передача, запоминание и преобразование информации, т.е. сигналов различной природы и назначения. В своей Кибернетике Н. Виннер сформулировал две фундаментальные идеи: о едином подходе к различным процессам управления и об информации как одной из важнейших характеристик материи. Формирование кибернетики как науки было подготовлено предшествующим развитием знаний в различных областях, а также практическими достижениями в техники. Из рассматриваемых кибернетикой принципов и концепций наиболее длительную историю, по-видимому, имеют принцип обратной связи и концепция общности живого организма и машины. Первой убедительной технической реализацией принципа обратной связи можно назвать маятниковые часы, изобретенные Х. Гюйгенсом (1657) или более раннее устройство - водяная мельница, рассмотренная в книге А. Рамелли Различные искусственные машины (1588). Теория общности процессов в живом организме и машинах основывается на идеях Р. Декарта, сформулированных в Трактате о человеке (1649), и механических концепциях Ж. Ламетри, изложенных в его работе Человек-машина. Теория искусственного интеллекта, отправной точкой которой является общность живых организмов и машин, также восходит к весьма отдаленным во времени представлениям. Например, идеей о возможности технической реализации умственных процессов руководствовался Б. Паскаль создавая свою суммирующую машину (1641). Еще более ранней по времени является идея механического устройства для получения разумной и новой по содержанию информации. Подобное весьма простое устройство, обеспечивающее механическое сочетание различных слов (вертушка Луллия), было сконструировано испанским философом и богословом Р. Луллием (1235-1315). Длительную историю имеет также развитие математических идей и методов, которые подготовили теоретическую базу кибернетики. В целом предыстория кибернетики включает весьма обширный круг научных открытий, идей и технических достижений. Создание кибернетики стало одним из наиболее впечатляющих проявлений тенденций к интеграции наук. Среди дисциплин, достижения которых были использованы при формировании кибернетики, важное место занимает теория автоматического регулирования. Эта теория связана с именами Дж. Максвелла (1831-1879), И.А. Вышнеградского (1832-1895), А.М. Ляпунова (1875-1918), А. Стодолы (1859-1942) и других ученых. Не менее важную роль в формировании кибернетики сыграло развитие ряда разделов физиологии, в частности, теории условных рефлексов и исследования механизма обратных связей в биологических системах. Огромный вклад в эти направления был сделан, прежде всего, И.П. Павловым (1849-1936) исследованиями в области условных рефлексов, Н.А. Бертейном (1929) и П.К. Анохиным (1935) работами в области обратных связей. Математические основы кибернетики были заложены предшествующим развитием теории вероятности, математической статистики и математической логики. Важную роль сыграли исследования в области физики таких ее разделов, как термодинамика статистической физики. К области техники, оказавшим непосредственное влияние на формирование кибернетики, следует отнести энергетику, технику связи, автоматику и вычислительную технику, которая после создания ЭВМ сыграла исключительную роль в последующем развитии кибернетической техники.Параллельно с развитием самих научных дисциплин, влиявших на формирование кибернетики, имели место поиски общих черт, характеристик и закономерностей функционирования объектов, исследуемых физикой, химией, биологией и экономическими науками. Эти поиски исторически предшествовали cозданию двух научных направлений: общей теории систем и кибернетики.
Другое направление формирования кибернетики связано с вычислительной техникой и математической логикой. В программе создания вычислительных машин, проводимой в США В. Бушем, принимал участие Корберт Винер, который в 1940 г. детально изучил возможности разработки вычислительной машины для решения дифференциальных уравнений в частных производных. Счетно-решающая техника привлекала его внимание с точки зрения общности в ее нервных сетей. Важным показателем такой общности явилось применение аппарата математической логики к анализу данных процессов, что в перспективе могло рассматриваться как первый шаг на пути моделирования не только нервной деятельности, но и мышления. Следует заметить, что концепция общности процессов в вычислительных машинах на релейных схемах и в нервной системе, разделяемая Н. Винером и объединив вокруг него группой ученых, обсуждалась совместно с конструкторами цифровых вычислительных машин Г. Айкеном и Г. Голдстайном, а также с математиком Дж. фон Нейманом. Вместе с тем необходимо иметь ввиду, что личная роль Н. Винера в формировании кибернетики существенно отличается, например, от роли Эйнштейна в разработке специальной и общей теории относительности или Менделеева в построении периодической системы элементов. Кеплер, Ньютон, Дарвин, Менделеев, Павлов, Эйнштейн и некоторые другие великие ученые создали в известном смысле завершенные (для определенного уровня развития науки) фундаментальные теории. Норберт Винер предложил ряд идей и концепций, частично опирающихся на точные результаты, частично - на предположения и аналогии. Вклад Винера в формирование кибернетики как точной науки (если рассматривать последнюю только как систему точных результатов), по-видимому, не превышает вклада ряда его современников (хотя подобные оценки в целом всегда спорны). Из зарубежных ученых это в первую очередь Дж. фон Нейман (1903-1957), оказавший глубокое влияние на создание теории автоматов, теории игр и теории цифровых вычислительных машин; А. Тьюринг (1912-1954), который внес выдающийся вклад в формирование теории алгоритмов и получил важные результаты в области математической логики, проектирования ЭВМ и программирования; К. Шеннон, с именем которого во многом связано создание теории информации и теории автоматов и другие. Ряд крупнейших результатов получен советской школой кибернетики, сложившейся в конце 1950 - начале 60-х гг. В 1959 г. в СССР был создан научно-организационный центр, осуществляющий координацию важнейших научно-исследовательских работ по кибернетике, - научный совет по комплексной кибернетике АН СССР, председателем которого со дня основания являлся адмирал А.И. Берг (1893-1979). Имена выдающихся советских ученых - А.А. Андропова (1901-1952), В.М. Глушкова (1923-1982), Л.В. Канторовича, А.Н. Колмогорова (1903-1978), С.А. Лебедева (1902-1974), А.А. Ляпунова (1911-1973), Л.А. Маркова (1903-1979), Л.С. Понтрягина, М.Л. Цетлина (1924-1966) и других - прочно вошли в историю кибернетики, существенно повлияли на общий ход ее развития. Например, выдающийся вклад в кибернетику, вычислительную технику и математику академика В.М. Глушкова, работающего в УССР, высоко оценен еще при жизни ученого. Он сумел объединить обширные знания в одно научное направление - информатику - и стал основоположником этой науки в республике. Благодаря усилиям В.М. Глушкова был создан Институт кибернетики НАН Украины, в котором в 1960-70-е гг. были развернуты фундаментальные и прикладные исследования, составившие в совокупности то, что сейчас называется информатикой. В 1996 г. международное компьютерное общество (ІЕЕЕ Computer Society) за основание первого в СССР Института кибернетики НАН Украины, создание теории цифровых автоматов и работы в области макроконвейерных архитектур вычислительных машин присудило В.М. Глушкову медаль Пионер компьютерной техники.
Большой вклад в развитие информатики внесли также ученые Украины Е.Л. Ющенко, В.Л. Рабинович, Ю.В. Капитонова, А.А. Летичевский и др. В бывшем СССР, в том числе и в Украине, понятие вычислительная техника долгое время использовалось как для обозначения технических средств, так и для науки о принципах их построения и проектирования. Они существовали сравнительно самостоятельно до конца первой половины ХХ в. Они представляют собой как элементы чисто инженерного знания, так и некоторые локальные обобщения - результат развития теоретического знания в отдельных естественно-научных и научно-технических дисциплинах. К ним относятся:
системы автоматического регулирования и управления, теория автоматического регулирования;
элементы моделирования и локальные теории моделей для различных областей техники;
счетно-решающие машины и математические инструменты;
цифровые вычислительные машины;
элементы программирования для ЦВМ;
релейно-контактные схемы управления и защиты, элементы теории релейно-контактных схем;
средства связи и некоторые вопросы теории связи;
биомедицинские исследования - биомеханика, общая физиология, физиология высшей нервной деятельности;
вопросы административного и производственного управления, элементы общей теории систем;
элементы психологии труда и инженерной технологии;
математическая логика как часть математики.
Следует отметить, что своеобразным знаком завершения начального этапа развития кибернетики стало издание в середине 1970-х гг. двухтомной энциклопедии и толкового словаря по кибернетике. Обе книги были подготовлены и выпущены в свет по инициативе В.М. Глушкова, который привлек к работе над этими изданиями многих специалистов не только из руководимого им института, но и из других ведущих в этой области организаций страны. После 1982 г. Словарь по кибернетике был выпущен повторно. Через несколько лет, знаменуя новый этап в развитии информатики, вышли толковый словарь и трехтомный справочник по искусственному интеллекту, опубликован энциклопедический словарь по информатике, согласно которому разделы Кибернетика и Искусственный интеллект вошли, наряду с другими разделами, в состав информатики.
В 1986 г. вышел сборник с символическим названием Кибернетика. Становление информатики. Он открывался статьями президента АН СССР А.П. Александрова и вице-президента Е.П. Велихова, в которых говорилось об определяющем значении информатики для развития человеческого общества в грядущем столетии. В этом же сборнике помещены статьи наиболее авторитетных ученых и организаторов науки в области информатики. Основная идея авторов статей состояла в том, что информатика уже оторвалась от своей прародительницы кибернетики и стала самостоятельной научной дисциплиной.
Характеризуя информатику 1980-х гг., один из ведущих специалистов в области теоретического и системного программирования А.П. Ершов (1931-1988) пишет: …этот термин слова, уже в третий раз, вводится в русский язык в новом и куда более широком значении - как название фундаментальной естественной науки, изучающей процессы передачи и обработки информации и несколько далее подчеркивает, что информатика определяется как наука об информационных моделях, обретающих фундаментальное философское понятие информация. Термин информатика получает широкое распространение, а термин кибернетика исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху кибернетического бума конца 1950 - начала 60-х гг. В названиях новых организаций термин кибернетика уже не используется. Информатика как отрасль науки изучает структуру и общие свойства научной информации, а также вопросы, связанные с ее сбором, хранением, поиском, переработкой, преобразованием, распространением и использованием в различных сферах человеческой деятельности, и состоит из множества разделов знаний. К ним можно отнести:
теорию алгоритмов (формальные модели алгоритмов, проблемы вычислимости, сложность вычислений и т.п.);
логические модели (дедуктивные системы, сложность вывода, нетрадиционные исчисления - индуктивный и абдуктивный вывод, вывод по аналогии, правдоподобный вывод, немонотонные рассуждения и т.п.);
базы данных (структура данных, ответы на запросы, логический вывод в базах данных, активные данные и т.п.);
искусственный интеллект (представления знаний, вывод на знаниях, обучение, экспертные системы и т.п.);
бионика (математические модели в биологии, модели поведения, генетические системы и алгоритмы и т.п.);
расположение образов и обработка зрительных сцен (статистические методы распознания, использование призрачных пространств, теория распознающих алгоритмов, трехмерные сцены и т.п.);
теория роботов (автономные роботы, представление знаний о мире, децентрализованное управление, планирование целесообразного поведения и т.п.);
инженерия математического обеспечения (языки программирования, технологии создания программных систем, инструментальные системы и т.п.);
компьютерная лингвистика (модели языка, анализ и синтез текстов, машинный перевод и т.п.);
числовые и символьные вычисления (компьютерно-ориентированные методы вычислений, модели переработки информации в различных прикладных областях, работа с естественно-языковыми текстами и т.п.);
системы человеко-машинного взаимодействия (модели дискурса, распределение работ в смешанных системах, организация коллективных процедур, деятельность в телекоммуникационных системах и т.п.);
нейроматематика и нейросистемы (теория формальных нейронных сетей, использование сетей для обучения, нейрокомпьютеры и т.п.);
использование компьютеров в замкнутых системах (модели реального времени, интеллектуальное управление, системы мониторинга и т.п.).
Информатика есть естественное порождение науки ХХ века. Она глубоко пронизывает все сферы человеческой жизни. Информатика прошла за полвека огромный путь отделяющий нынешнее время от начала эпохи компьютеров, без которых люди уже не представляют своей жизни. История формирования кибернетики, а затем и информатики тесно связана с вычислительной техникой, математической логикой. Эта история богата на имена, события, факты и прошла несколько этапов становления и развития. В доисторическом прошлом люди считали на пальцах или делали насечки на костях. Примерно около 4 тыс. лет назад, на заре человеческой цивилизации, были изобретены уже довольно сложные системы исчисления, позволявшие осуществлять торговые сделки, рассчитывать астрономические циклы, проводить другие вычисления. Несколько тысячелетий спустя появились первые ручные вычислительные инструменты. А в наши дни сложнейшие вычислительные задачи, как и множество других операций, казалось бы, не связанных с числами, решаются при помощи электронного мозга - компьютера. Закладка фундамента компьютерной революции происходила медленно и далеко не гладко. Отправной точкой этого процесса можно считать изобретение счетов, сделанное более 1500 лет назад, по-видимому, в странах Средиземноморья. Этим нехитрым устройством купцы пользовались для своих расчетов. Счеты оказались очень эффективным инструментом и вскоре распространились по всему миру, а в некоторых странах применяются и по сей день. Вплоть до ХVII в., ознаменовавшегося невиданным подъемом творческой мысли, счеты как вычислительный инструмент оставались практически вне конкуренции. В течение почти пяти веков цифровая вычислительная техника сводилась к простейшим устройствам для выполнения арифметических операций над числами, основой для их изобретения было зубчатое колесо, рассчитанное на фиксацию десяти цифр десятичной системы исчисления. Первый в мире эскизный рисунок тринадцатиразрядного десятичного суммирующего устройства на основе колес с десятью зубцами принадлежит Леонардо да Винчи. Он был сделан в одном из его дневников (ученый начал вести дневник еще до открытия Америки в 1492 г.).В 1623 г., через 100 с лишним лет после смерти Леонардо да Винчи, немецкий ученый Вильгельм Шиккард предложил свое решение той же задачи на основе шестирядного десятичного вычислителя, состоявшего также из зубчатых колес и рассчитанного на выполнение сложения, вычитания, а также табличного умножения и деления. Оба проекта были обнаружены лишь в наше время и оба остались только на бумаге. Заметный след в истории оставило изобретение Джоном Непером логарифмов, о чем сообщалось в публикации 1614 г. Его таблицы, расчет которых требовал очень много времени, позже были встроены в удобное устройство, чрезвычайно ускоряющее процесс вычисления, - логарифмическую линейку. Она была создана в конце 20-х годов ХVII в. В 1617 г. Непер придумал и другой способ перемножения чисел. Инструмент, получивший название костяшки Непера, состоял из набора сегментированных стерженьков, которые можно было располагать таким образом, что, складывая числа в прилегающих друг к другу по горизонтали сегментах, получали результат их умножения. Теории логарифмов Непера суждено было найти обширное применение. Однако его костяшки вскоре были вытеснены логарифмической линейкой и другими вычислительными устройствами, в основном, механического типа. Первым изобретателем их стал гениальный француз Блез Паскаль. Сын сборщика налогов, наблюдая бесконечные утомительные расчеты отца, задумал построить вычислительное устройство. Суммирующая машина Паскаля, паскалина, представляла собой механическое устройство - ящик с многочисленными шестеренками. Приблизительно за десятилетие он построил до 50 различных вариантов машины. Хотя паскалина вызвала всеобщий восторг, она не принесла изобретателю богатства. Основной недостаток паскалины состоял в неудобстве выполнения на ней всех операций, за исключением простого сложения. Тем не менее изобретенный им принцип связанных колес явился основой, на которой строилось большинство вычислительных машин на протяжении следующих трех столетий. Первая машина, позволявшая легко производить вычитание, умножение и деление, была изобретена в том же ХVII в. в Германии Готфридом Вильгельмом Лейбницем. В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, он решил изобрести механическое устройство, которое облегчило бы расчеты. Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины, - заметил Лейбниц. В 1673 г. он изготовил механический калькулятор. Арифметический прибор Готфрида Вильгельма Лейбница - двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление, для чего, в дополнение к зубчатым колесам использовался ступенчатый валик. Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно - с гордостью писал Лейбниц своему другу. Но прославился он прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления. Он заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах. Прошло еще более ста лет и лишь в конце ХVIII в. во Франции были осуществлены следующие шаги, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники - программное управление ткацким станком с помощью перфокарт, созданным Жозефом Жакаром, и технология вычислений при ручном счете, предложенная Гаспаром де Прони, который разделил численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, приведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой. Эти два новшества были использованы англичанином Чарльзом Беббиджем, осуществившим качественно новый шаг в развитии средств цифровой вычислительной техники - переход от ручного к автоматическому выполнению согласно составленной программе. Им был разработан проект аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.). Машина включала пять устройств - арифметическое (АУ), запоминающее (ЗУ), управления, ввода (как и первые ЭВМ появившиеся 100 лет спустя). АУ строилось на основе зубчатых колес, на них же предлагалось реализовать ЗУ (на 1000 50-разрядных чисел!). Для ввода данных и программы использовались перфокарты. Предполагаемая скорость вычислений: сложение и вычитание за 1 с., умножение и деление - за 1 мин. Помимо арифметических операций имелась команда условного перехода. Программы для решения задач на машине Беббиджа, а также описание принципов ее работы были составлены Адой Августой Лавлейс - дочерью Байрона. Были изготовлены отдельные узлы машины. Всю машину из-за ее громоздкости построить не удалось. Только зубчатых колес для нее понадобилось бы более 50 тыс. Заставить такую махину работать можно было только с помощью паровой машины, что и намечал Беббидж. Гениальную идею Беббиджа осуществил Говард Айкен, американский ученый, создавший в 1944 г. первую в США релейно-механическую ВМ - Марк - I. Ее основные блоки - арифметики и памяти были использованы на зубчатых колесах! Если Беббидж намного определил свое время, то Айкен, использовал все те же зубчатые колеса, т.е. в техническом плане при реализации идеи Беббиджа использовал устаревшие решения. Еще десятью годами ранее, в 1934 г. немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать (у себя дома) цифровую вычислительную машину с программным управлением и с использованием - впервые в мире! - двоичной системы счисления. В 1937 г. машина Z1 (Цузе 1) заработала! Она была двоичной, 22-х разрядной, с плавающей запятой, с памятью на 64 числа и все это на чисто механической (рычажной) основе! В том же 1937 г., когда заработала первая в мире двоичная машина Z1, Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированной ВМ, впервые в мире применив электронные лампы (300 ламп). Пионерами электроники оказались и англичане - в 1942-43 гг. в Англии была создана (с участием Алана Тьюринга) ВМ Колос. В ней было 2 тыс. электронных ламп! Машина предназначалась для расшифровки радиограмм германского вермахта. Работы Цузе и Тьюринга были секретными. О них в то время знали немногие. Они не вызывали какого-либо резонанса в мире. И только в 1946 г., когда появилась информация об ЭВМ ЭНИАК (электронный цифровой интегратор и компьютер), созданной в США Д. Мочли и П. Эккертом, перспективность электронной техники стала очевидной. (В машине использовалось 18 тыс. электронных ламп и она выполняла около трех тысяч операций в секунду). Однако машина осталась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти. Завершающую точку в создании первых ЭВМ поставили почти одновременно, в 1949-1952 гг. ученые Англии, Советского Союза и США (Морис Уилкс, ЭДСАК, 1949 г. Сергей Лебедев, МЭСМ, 1951 г., Джон Мочли и Преспер Эккерт, Джон фон Нейман ЭДВАК, 1952 г.), создавшие ЭВМ с хранимой в памяти программой. В истории вычислительной техники есть немало интересных фактов и событий. К ним относится забытая Мыслительная машина профессора А.Н. Щукарева. В апреле 1914 г., за четыре месяца до начала Первой мировой войны профессор Харьковского технологического института Александр Николаевич Щукарев по просьбе Политехнического музея приехал в Москву и прочитал лекцию Познание и мышление. Лекция сопровождалась демонстрацией созданной А.Н. Щукаревым машины логического мышления, способной механически осуществлять простые логические выводы на основе исходных смысловых посылок. Лекция имела большой резонанс. Присутствовавший на ней профессор А.Н. Соков откликнулся статьей с провидческим названием Мыслительная машина (журнал Вокруг света, № 18, 1914 г.), в которой написал: Если мы имеем арифмометры, складывающие, вычитающие, умножающие миллионные числа поворотом рычага, то, очевидно, время требует иметь логическую машину, способную делать логические выводы и умозаключения одним нажиманием соответствующих клавиш. Это сохранит массу времени, оставив человеку область творчества, гипотез, фантазии, вдохновения - душу жизни.Машина логического мышления А.Н. Щукарева представляла собой ящик высотой 40, длиной - 25 и шириной 25 см. В машине имелись 16 штанг, приводимых в движение нажатием кнопок, расположенных на панели ввода исходных данных (смысловых посылок). Кнопки воздействовали на штанги, те на световое табло, где высвечивался (словами) конечный результат (логические выводы из заданных смысловых посылок). А.Н. Щукарев родился в 1864 г. в Москве в семье государственного чиновника. Окончил Московский университет. В 1909 г. защитил докторскую диссертацию. В 1911 г. был приглашен в Харьковский технологический институт на должность профессора химии. Последующие 25 лет его педагогической и творческой деятельности были связаны с этим институтом (впоследствии Харьковский политехнический). Кроме химии Щукарева интересовали вопросы логики мышления. Приезд в Харьков сыграл большую роль в его жизни. Дело в том, что в Харьковском университете много лет работал хорошо известный в то время в России профессор Павел Дмитриевич Хрущев (1849-1909). По специальности он также был химиком и также, как Щукарев, был увлечен проблемой мышления и методологией науки. Еще в 1897 г. он прочитал для профессорско-преподавательского состава Харьковского университета курс лекций по теории мышления и элементам логики. Вероятно в это время у него возникла мысль повторить (воспроизвести)логическое пианино - машину, изобретенную в 1870 г. английским ученым математиком Вильямом Стенли Джевонсом (1835-1882), профессором Манчестерского университета, книга которого Основы науки была переведена на русский язык в 1881 г. и, очевидно, была известна П.Д. Хрущеву. К тому же по материалам книги профессором математики Одесского университета И.В. Слешинским в 1893 г. была опубликована статья Логическая машина Джевонса (Вестник опытной физики и элементарной математики, семестр ХY, № 7). Джевонс не придавал своему изобретению практического значения. Логическое пианино трактовалось и использовалось только как учебное пособие при преподавании курса логики. Судя по всему, профессор П.Д. Хрущев, воссоздавший машину Джевонса, (в начале 1900-х гг. или несколько ранее), намеревался использовать ее подобно Джевонсу как учебное пособие во время своих лекций по логике и мышлению. После смерти П.Д. Хрущева в 1909 г. его вдова передала машину Харьковскому университету, где он долгое время работал. Каким образом А.Н. Щукарев отыскал машину, сконструированную П.Д. Хрущевым - неизвестно. Сам А.Н. Щукарев в статье Механизация мышления (1925 г.) пишет, что она досталась ему по наследству.А.Н. Щукарев вел большую просветительскую работу, выступал с лекциями на тему познания и мышления во многих городах Украины, а также в Москве и Ленинграде. Первое время он демонстрировал машину, построенную Хрущевым, а затем - сконструированную им самим. В указанной выше статье он сообщает: Я сделал попытку построить несколько видоизмененный экземпляр, вводя в конструкцию Джевонса некоторые усовершенствования. Усовершенствования эти, впрочем, не носили принципиального характера. Я просто придал инструменту несколько меньшие размеры, сделал его весь из металла и устранил кое-какие конструктивные дефекты, которых в приборе Джевонса, надо сознаться, было довольно порядочно. Некоторым дальнейшим шагом вперед было присоединение к инструменту особого светового экрана, на который передается работа машины и на котором результаты мышления появляются не в условно-буквенной форме, как на самой машине Джевонса, а в обыкновенной словесной форме. К сожалению, машины Хрущева и Щукарева не сохранились. Однако, в статье Механизация мышления (логическая машина Джевонса), опубликованной профессором А.Н. Щукаревым в 1925 г. (Вестник знания, № 12), дается фотография машины сконструированной Щукаревым и ее достаточно подробное описание, а также, что очень важно - рекомендации по ее практическому применению. Главное, что сделал Щукарев, заключалось в том, что он, в отличие от Джевонса и Хрущева, видел в машине не просто школьное пособие, а представлял ее своим слушателям как техническое средство механизации формализуемых сторон мышления. Статью Механизация мышления он начинает с изложения истории создания технических средств для счета. Упоминает абак, суммирующую машину Паскаля, арифметический прибор Лейбница, логарифмическую линейку и аналоговые дифференцируемые машины для решения уравнений. Механизация формализуемых логических процессов рассматривается им как следующий шаг в развитии подобных устройств, оказывающих существенную помощь человеку в умственной работе. В качестве примера в статье приводится решение задачи прогнозирования электрических свойств водных растворов окислов химических элементов. С помощью машины были найдены восемь вариантов растворов электролитов и неэлектролитов. Все эти выводы совершенно правильны, - пишет ученый, - однако мысль человеческая сильно путалась в этих выводах. Как и в наше время, когда в бывшем Советском Союзе кибернетику посчитали вначале лженаукой, так и в 20-е годы воззрения А.Н. Щукарева, помимо доброжелательного отношения, оценивались рядом ученых резко отрицательно. Профессор И.Е. Орлов в 1926 г. на страницах журнала Под знаменем марксизма написал: …Претензии профессора Щукарева, представляющего школьное пособие Джевонса в качестве мыслящего аппарата, а также наивное изумление его слушателей, - все это не лишено некоторого комизма. …Нас хотят убедить в формальном характере мышления, в возможности его механизации (Орлов И. О механизации умственного труда // Под знаменем марксизма. - № 12. - 1926 г.). К чести журнала - его редакция не согласилась со взглядами автора статьи.Последнюю лекцию А.Н. Щукарев прочитал в Харькове в конце 1920-х гг. Свою машину он передал Харьковскому университету на кафедру математики. В дальнейшем след ее потерялся. В истории развития информационных технологий в Украине и в бывшем Советском Союзе имя А.Н. Щукарева связано с важным шагом в области обработки информации - пониманием и активной пропагандой важности и возможности механизации (в дальнейшем автоматизации) формализуемых сторон логического мышления. Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это, прежде всего, их элементная база (из каких основных элементов они построены). Элементной базой машин первого поколения были электронные лампы - диоды и триоды, ЭВМ второго поколения - полупроводниковые элементы, ЭВМ третьего поколения - интегральные схемы (ИС), ЭВМ четвертого поколения - большие интегральные схемы (БИС). Конечно же, деление ЭВМ на поколения в определенной мере условно. Кроме элементной базы должны учитываться такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Существует немало моделей, которые по одним признакам относятся к одному, а по другим - к другому поколению. И все, же несмотря на эту условность, каждое поколение ЭВМ можно считать качественным скачком в развитии электронно-вычислительной техники. Следует заметить, что первая ЭВМ (ЭНИАК) с программным управлением разрабатывалась в США в условиях Второй мировой войны и была построена к 1946 г. При сравнении ее с современной вычислительной техникой эту машину образно называют динозавром в мире млекопитающих. Действительно, она представляла собой огромный по объему агрегат длиной более 30 м., содержала до 18 тыс. электронных ламп и потребляла около 150 кВт электроэнергии. Однако для своего времени она знаменовала большое достижение, так как применение электронных реле (триггеров) вместо электромеханических реле позволило почти на три порядка ускорить выполнение арифметических операций. В самом деле, если машина МАРК II могла выполнять в секунду около пяти сложений или одно умножение, то ЭНИАК способна была произвести до 5 тыс. сложений или 500 умножений в секунду. Истекшие более 40 лет истории электронной вычислительной техники характеризировались стремительным улучшением характеристик ЭВМ и, прежде всего, увеличением быстродействия и емкости памяти. Быстродействие, или, другими словами, скорость работы ЭВМ (V), измеряют количеством простейших операций (типа сложения или вычитания) в секунду, а емкость памяти (М) - количеством байтов. Напомним, что 1 байт = 8 бит. Быстродействие ЭВМ определяет ее производительность, а емкость памяти - сложность задач, которые ЭВМ может решать (длину программы и количество исходных данных, необходимых для решения задачи). Но в конечном счете емкость памяти определяет также и производительность ЭВМ, так как при малой емкости быстродействующая машина быстро использует все размещенные в памяти данные в программу и будет простаивать и ждать, когда же извне будут введены новые данные и программа. Рассмотрим теперь, как изменялись основные характеристики ЭВМ (быстродействие и емкость памяти) с момента их создания до настоящего времени. Первые ЭВМ имели быстродействие от сотен до тысяч операций в секунду и емкость памяти от сотен до тысяч байт. Заметим, что, говоря о памяти, мы здесь будем иметь в виду оперативную или внутреннюю память ЭВМ. Так называют ту часть памяти, в которой хранятся выполняемая программа и данные (или часть их), непосредственно используемые при выполнении этой программы. Очевидно, что оперативная память должна функционировать в темпе работы арифметического устройства ЭВМ. Кроме оперативной, различают внешнюю память на магнитных лентах и дисках. Внешняя память (особенно на магнитных лентах) может иметь практически неограниченную емкость. Уже в 1960 г. существовали системы ЭВМ, выполнявшие миллионы операций в секунду, а емкость их памяти достигла сотен тысяч байт. Следует отметить что здесь речь идет о характеристиках лучших в мире, уникальных ЭВМ. Естественно, что ЭВМ серийного выпуска имели характеристики на один-два порядка ниже.
В 1970 г. уже біли созданы системы ЭВМ с быстродействием около сотен миллионов операций в секунду и емкостью памяти до десятков миллионов байт. Нужно сказать, что отдельно взятая ЭВМ в лучшем случае работает со скоростью до десятков миллионов операций в секунду, а большее быстродействие достигается созданием комплексов ЭВМ (машинных комплексов), состоящих из десятков и сотен компьютеров, которые одновременно могут решать отдельные части (фрагменты) одной и той же задачи. Сейчас быстродействие наиболее совершенных многомашинных комплексов равняется миллиардам операций в секунду, а емкость памяти - сотням миллионов байт. Наконец, быстродействие комплексов может составлять несколько десятков миллиардов байт. Одновременно с увеличением быстродействия и емкости памяти стремительно уменьшаются габариты и стоимость ЭВМ, что достигается применением новых элементов и, главное, усовершенствованием технологии изготовления ЭВМ.Весь путь развития электронных вычислительных машин можно разделить на несколько периодов, которым соответствуют отдельные поколения ЭВМ, характеризующиеся, как уже отмечалось, прежде всего, определенной элементной базой. Первое поколение ЭВМ (1945 г. - конец 50-х гг.) представляли машины на вакуумных электронных лампах, вначале больших, затем миниатюрных. Их оперативная память работала на специальных запоминающих электронно-лучевых трубках, подобных кинескопам телевизоров, а с середины 1950-х гг. - на ферритовых сердечниках (колечках).Примером машины первого поколения служит БЭСМ (быстродействующая электронная счетная машина), созданная в СССР под руководством академика С.А. Лебедева. Она была введена в эксплуатацию в 1952 г. и в течении нескольких последующих лет являлась одной из наиболее совершенных в Европе. Ее быстродействие достигало 10 тыс. простых операций в секунду. Под простыми операциями понимают операции типа сложения и вычитания. В дальнейшем во всех случаях, когда будет указываться быстродействие в операциях в секунду, будут подразумеваться простые операции. К машинам первого поколения относятся также несколько модификаций ЭВМ Урал, Минск и др. В конце 50-х гг. ХХ в. большое распространение получили машины второго поколения. В них на смену электронным лампам пришли диоды и транзисторы - значительно более экономичные и малогабаритные элементы, а основными элементами запоминающих устройств по-прежнему являлись ферритовые сердечники. Среди ЭВМ второго поколения в СССР наиболее широкое применение получили различные модификации машин Урал и Минск. Крупным шагом вперед в развитии отечественной и мировой вычислительной техники стало создание машины БЭСМ-6 под руководством С.А. Лебедева (1966 г.). Эта ЭВМ была в свое время одной из наиболее совершенных в мире. Быстродействие ее достигало миллиона операций в секунду. Модифицированные машины БЭСМ-6 продолжают успешно работать до настоящего времени. Во второй половине 1960-70-х гг. широко развернулось проектирование и производство ЭВМ третьего поколения. Это машины, построенные на интегральных схемах (ИС). Интегральная схема представляет собой микроминиатюрное полупроводниковое электронное устройство, элементы которого (транзисторы, диоды, резисторы, конденсаторы и др.) конструктивно объединены (интегрированы), соединены между собой электрически и размещены на одной общей подложке (обычно на кристалле особо чистого кремния или германия).
ЭВМ третьего поколения строились на интегральных схемах малой или средней степени интеграции, которые содержали от десятков до сотен электронных элементов. Такая ИС являлась обычно самостоятельным схемным узлом - усилителем, триггером, многовходовой логической схемой. Эта ИС может заменить собой один или несколько схемных каскадов, которые ранее монтировались из отдельных (дискретных) компонентов. Типичными представителями ЭВМ третьего поколения являются машины серии ІВМ-360, выпускавшиеся со второй половины 1960-х гг. ХХ в. фирмой ІВМ (США). К этим машинам близки по своим характеристикам, технологии и структуре машины Единой системы - ЕС ЭВМ. Их разработка - результат совместных усилий стран - Болгарии, Венгрии, Польши, СССР, Чехии и Словакии, между которыми в 1969 г. было подписано соответствующее многостороннее соглашение. Важной особенностью ЕС ЭВМ, предназначенных для решения широкого класса научно-технических, экономических, управленческих и других задач, была их программная совместимость. Это означает, что программа, составленная для решения некоторой задачи, может быть реализована на любой из машин серии, даже если эти машины существенно отличаются по быстродействию, емкости памяти, аппаратному составу. Производительность машин первой очереди ЕС ЭВМ (Ряд-1) составляла от 20 до 500 тыс. операций в секунду. Их последующие модели (Ряд-2 и Ряд-3) имели быстродействие от 30 тыс. до 4 млн операций в секунду. Продолжается разработка все более совершенных ЕС ЭВМ. В частности, изготовлена машина ЕС-1066 с максимальной производительностью 12,5 млн операций в секунду и оперативной памятью - 8-16 Мбайт.В начале 70-х гг. ХХ в. появились первые машины четвертого поколения. Нужно сказать, что четко отделить четвертое поколение от третьего трудно, и это деление в значительной степени условно. Машины четвертого поколения характеризуются широким использованием больших интегральных схем (БИС), которые могут содержать тысячи и десятки тысяч элементов на одном кристалле. Ферритовая память в этих ЭВМ уступила место полупроводниковой. В машинах четвертого поколения увеличен набор команд, широко применяются встроенные подпрограммы, автоматизирована отладка программ, повышена надежность, расширено использование специализированных процессов, получили распространение многопроцессорные и многомашинные вычислительные комплексы. К вычислительным системам четвертого поколения относят, например, высокопроизводительную американскую вычислительную машину ИЛЛИАК-IV, эксплуатируемую с середины 1970-х гг., быстродействие которой достигает 100-200 млн. операций в секунду. Отечественные ЭВМ четвертого поколения - это вычислительные комплексы Эльбрус-1 (10 млн операций в 1 с.) и Эльбрус-2 (100 млн операций в 1 с.). К настоящему времени у нас созданы и освоены в серийном производстве универсальные ЭВМ с быстродействием 125 млн.операций в 1 с. Наряду с ЕС ЭВМ, в течении последних десятилетий ХХ вв. странами СЭВ была разработана и выпускалась система мини-ЭВМ (СМ ЭВМ) средней мощности для решения производственных и экономических задач малой и средней сложности, а также для отбора, подготовки и предварительной обработки информации. Например, вычислительный комплекс типа СММ-1210.01 имел производительность около 1 млн операций в 1 с. и емкость памяти 4 Мбайт. В настоящее время выпускаются и продаются дешевые карманные бытовые, инженерные и программируемые микрокалькуляторы для решения самых разнообразных не слишком сложных задач. Нужно отметить, что сегодняшний миниатюрный программируемый микрокалькулятор по ряду параметров намного превосходит, скажем, ЭВМ Урал или Минск середины ХХ в., которые занимали целую комнату и стоили несколько десятков тысяч рублей. Двумя из самых распространенных отечественных микрокалькуляторов до сих пор остаются Электроника БЗ-36 и программируемый калькулятор Электроника БЗ-34.
Наконец, широко разворачивается, особенно в последнее десятилетие, выпуск персональных компьютеров (ПК), предназначенных для автоматизации рабочего места инженера, конструктора и др.Факты свидетельствуют, что материальной базой реализации управления с использованием методов кибернетики является электронная вычислительная техника. При этом кибернетическая эра вычислительной техники характеризуется появлением машин с внутренним программированием и памятью, т.е. таких машин, которые в отличие от логарифмической линейки, арифмометров и простых клавишных машин могут работать автономно, без участия человека, после того как человек разработал и ввел в их память программу решения сколь угодно сложной задачи. Это позволяет машине реализовать скорости вычислений, определяемые их организацией, элементами и схемами, не ожидая подсказки что дальше делать со стороны человека-оператора, не способного выполнять отдельные функции чаще одного-двух раз в секунду. Именно это и позволило достичь в настоящее время быстродействия ЭВМ в сотни тысяч, миллионы, а в уникальных образцах - сотни миллионов арифметических операций в секунду. Современный компьютер - это универсальное, многофункциональное, электронное автоматическое устройство для работы с информацией. Компьютеры в современном обществе взяли на себя значительную часть работ, связанных с информацией. По историческим меркам компьютерные технологии обработки информации еще очень молоды и находятся в самом начале своего развития. Пока еще ни одно государство на Земле не создало информационного общества. Еще существует множество потоков информации, не вовлеченных в сферу действия компьютеров. Компьютерные технологии сегодня преобразуют или вытесняют старые, докомпьютерные технологии обработки информации. Текущий этап завершится построением в индустриально развитых странах глобальных всемирных сетей для хранения и обмена информацией, доступных каждой организации и каждому члену общества. Надо только помнить, что компьютерам следует поручать то, что они могут делать лучше человека, и не употреблять во вред человеку, обществу.