Геотермальные установки

СОДЕРЖАНИЕ: Исследование и проектирование геотермальных установок, а так же системы отопления, работающих на геотермальных источниках теплоснабжения. Расчет коэффициента эффективности для различных систем геотермального теплоснабжения. Подбор отопительных приборов.

Введение

В данной расчетно-графической работе рассматриваются и проектируются геотермальные установки, а так же системы отопления работающие на геотермальных источниках теплоснабжения.

Исходными данными для варианта 17 являются следующие данные:

На расчет коэффициента эффективности для различных систем геотермального теплоснабжения:

Температура геотермальной воды 100

Температура геотермального теплоносителя 140

Температура обратной воды после отопления 75

Температура наружного воздуха -9

Продолжительность отопительного сезона 167

Месторождение пластового типа, пласт полуограниченный 4,9

Расчетная нагрузка на отопление 1,04

Расчетная нагрузка на горячее водоснабжение 0,58

Подбор отопительных приборов и построение графиков геотермального систем отопления:

Расчетная мощность прибора 1980

Расчетная температура горячей воды 76

Расчетная температура обратной воды 31

Расчетная температура внутреннего воздуха в помещении 19

На расчет комплексной системы геотермального теплоснабжения:

Температура геотермальной воды 100

Температура водопроводной воды 10

Температура обратной воды после отопления 60

Температура наружного воздуха -22

Расчетный дебит геотермальной воды 167

Расчетный среднесуточный расход горячей воды 103

Расчетная начальная температура нагреваемой воды 72

Расчетная температура внутреннего воздуха в помещении 18

1. Расчет коэффициента эффективности для различных систем геотермального теплоснабжения

А. Открытая двухтрубная геотермальная система теплоснабжения с присоединением систем ГВ к подающему трубопроводу (т.е. параллельная подача геотермального теплоносителя на отопление и горячее водоснабжение).

1. Удельный расход геотермальной воды, приходящей на 1 МВт расчетной тепловой нагрузки, определяется по формуле:

, (1)

где: , – расчетные нагрузки отопления, вентиляции и горячего водоснабжения, Вт;

с – удельная теплоемкость теплоносителя, Дж/(кг°С),

,– расчетные перепады температур теплоносителя в системах отопления, вентиляции и горячего водоснабжения, °С,

– удельный расход геотермальной воды, приходящейся на единицу расчетной тепловой нагрузки объекта, кг / Дж.

кг/с.

2. Доля расчетного дебита геотермальной воды, расходуемой на отопление, определяется по формуле:

(2)

.

То же, на горячее водоснабжение получим из формулы:

, (3)

Норм.

3. Степень относительного использования максимума нагрузки

– на отопление:

, (4)

где: jсp.от. – среднеотопительный коэффициент отпуска теплоты, определяемый по формуле:

, (5)

где: – температура воздуха в обслуживаемых помещениях, °С;

– расчетная температура наружного воздуха для проектирования систем отопления или вентиляции, °С;

t, tн.ср. – средняя за период работы систем отопления или вентиляции температура наружного воздуха, °С (см. СНиП [4]).

Пусть , тогда ,

– на горячее водоснабжение:

, (6)


.

4. Коэффициент использования скважины определяется по формулам таблицы 1. [1]

– для отопления:

(7)

,

– для горячего водоснабжения:

, (8)

5. Средневзвешенная величина коэффициента использования скважины определяется следующим образом:

, (9)

.

6. Степень относительного увеличения расчетного дебита скважины в целом для объекта определяется при известном для полуограниченного пласта с по рис. 1 [1] – .

7. Степень относительного срабатывания температурного перепада определяется по формулам, :


– на отопление:

, (10)

.

– на горячее водоснабжение .

8. Коэффициент эффективности геотермального теплоснабжения для данной схемы определяется следующим образом:

, (11)

.

Б. Зависимая система отопления с пиковым догревом геотермального теплоносителя:

1. :

, (12)

кг/с,

2. (13)

.

3. Коэффициент отпуска теплоты, соответствующий моменту отключения пикового догрева, определяется следующим образом:

, (14)

4. Пусть коэффициент отпуска теплоты, соответствующий моменту окончания отопительного сезона .

5. Ориентировочная продолжительность работы пикового догрева Тп (сут.) определяем по формуле:

, (15)

где: А и В-эмпирические коэффициенты (графикам рис. 15 и 16 из приложения [1]).

При t н = -9°С; А = 0,06; В = 0,55.

Тогда:

сут

6. Относительный коэффициент отпуска теплоты определяется следующим образом:

, (16)

7. Температура сбросной воды, соответствующая моменту отключения пикового догрева, приближенно определяется по формуле:

, (17)

8. Коэффициент использования скважины при отоплении определяется по формуле:

, (18)

9. Доля пикового догрева на отопление определяется по графикам рис. 2. [1]

(19)

и

dн = 0,05 (см. рис. 2 [1]).

10. Степень относительного срабатывания температурного перепада:

– для систем отопления:

, (20)


– для систем горячего водоснабжения:

11. Средневзвешенная величина коэффициента использования скважины определяется следующим образом:

, (21)

12. По рис. 1 [1] определяем zoб. = 1,43.

13. Коэффициент эффективности геотермального теплоснабжения объекта равен:

, (22)

.

2. Подбор отопительных приборов и построение графиков регулирования геотермальных систем отопления

геотермальный установка теплоснабжение отопительный

Ниже приведен пример расчета требуемого номинального теплового потока отопительного прибора геотермальной системы отопления, устанавливаемого в помещении.

1. Зададимся расчетной температурой обратной воды:

;

2. Определяем расчетную степень срабатывания теплового потенциала теплоносителя при заданных условиях следующим образом:

, (23)

.

Поскольку 0,4, расчет следует вести по следующей формуле:

, (24)

.

3. Определим расчетный расход теплоносителя через отопительный прибор:

кг/с.

4. Выбираем тип отопительного прибора – конвектор КН-20 «Комфорт» (n=const = 0,35; p =const= 0,07) и по формуле (24) [1]:

где , (25)

.

- берется из первого задания.

и вычисляем расчетный среднестепенной температурный напор:


°C (26)

5. Определим значения и :

, (27)

;

, (28)

.

6. Определим номинальный тепловой поток отопительного прибора, который необходимо установить в данном помещении:

, (29)

Вт.

Сопоставление полученного результата с паспортными данными на КН-20 показывает, что в данном случае для покрытия расчетных теплопотерь следует установить 3 прибора КН-20 – 2,9, имеющих длину оребренной части 1000 мм.

7. Для построения графика количественного регулирования отопительной нагрузки вначале определим величину c по формуле:

Далее, пользуясь формулой для регулирования отопительной нагрузки:

(30)

где: j – коэффициент отпуска теплоты на отопление;

G и G – текущий и расчетный расходы теплоносителя.

А также формулой, которая определяет текущую температуру обратной воды:

, (31)

где: – расчетные температуры горячей и обратной воды в тепловой сети, °С.

Построим графики расхода теплоносителя и температуры обратной воды системы отопления (см. рис. 1 и 2).

3. Расчет комплексной системы геотермального теплоснабжения

Определим основные технические показатели комплексной системы геотермального теплоснабжения, обеспечивающей отопление теплицы и горячее водоснабжение зданий, которые необходимы для технико-экономических расчетов.

1. Зададимся расчетной температурой водопроводной воды после теплообменного аппарата:

, (32)

2. Требуемый коэффициент эффективности теплообменного аппарата ГВ определим по формуле:

, (33)

.

3. Произведение KF, характеризующее конструкцию и размеры теплообменного аппарата равно:

, (34)

Вт/° С,

(т.е. например при К = 1000 Вт/(м2 °С), F = 1700 м2 ).

4. Установленная тепловая мощность пикового источника теплоты:

МВт, (35)

МВт.

5. Значение коэффициента отпуска теплоты, соответствующее включению (отключению) пикового догрева, определяется так:


, (36)

.

а соответствующая jп температура наружного воздуха tн.п определяется так:

°С, (37)

.

6. В соответствии с данными климатологии продолжительность работы пикового догрева (при tн -3,3°С) составит 2272 часов » 95 сут.

Таблица 1. Климатологические данные годового потребления тепла

Для г. Таганрог (, tн.ср. =3, Т=167 сут)

Повторяемость температур наружного воздуха, °С

Кол-во часов

– 50 и ниже

– 49,9 – 45

– 44,9 – 40

– 39,9 – 35

– 34,9 – 30

– 29,0 – 25

5

– 24,9: -20

36

41

-19,9: -15

135

176

-14,9: -10

310

486

-9,9: -5

630

1116

– 4,9: -0

1156

2272

+0,1: +5

1186

3458

+5,1: +8

694

4132

Всего часов

4152


Годовую выработку теплоты для пикового догрева можно установить, определив площадь, описанную графиком годовой выработки теплоты (рис. 1), которая в данном случае равна 13320 ГДж/год. При среднем КПД пиковой котельной 0,7 для выработки этого количества теплоты потребуется 2337 т у. т. В системе с теплонасосной установкой расход электроэнергии в ТНУ при среднем коэффициенте преобразования 3,5 составит Э = 13320/3,5 = 3806 ГДж/год.

Годовой расход геотермального теплоносителя можно определить, установив площадь, описанную графиком продолжительности расхода геотермального теплоносителя (см. рис. 2), который построен на основании графика регулирования Gт (j) по формуле (25) или (45) [1]:

В рассматриваемом случае годовой расход теплоносителя составляет 4,1 106 т/год.

График температуры сбросной геотермальной воды (необходимый для расчета пластовой циркуляционной системы), построенный по соответствующим зависимостям представлен на рис. 3. Температура сбросной воды в летний период эксплуатации равна 32,2°С, в расчетный период в системе с пиковой котельной t с = 40,6°С, в системе с ТНУ – 61,8 °С.

Список использованной литературы

1. Методические указания «Геотермальные установки».

2. СНиП 23–01–99 Строительная климатология. – М.: Госстрой РФ, 2000. – 68 с.

3. СНиП 41–01–2003. Отопление, вентиляция и кондиционирование. – М.: Госстрой РФ, 2004. – 71 с.

Скачать архив с текстом документа