Конспект по дискретной математики

СОДЕРЖАНИЕ: Дискретная математика Введение Общество 21в. – общество информационное. Центр тяжести в решении задач переместился от задач вычислительной математики к задачам на дискретных структурах. Математика нужна не как метод расчета, а как метод мышлению средство формирования и организации…

Дискретная математика

Введение

Общество 21в. – общество информационное. Центр тяжести в решении задач переместился от задач вычислительной математики к задачам на дискретных структурах. Математика нужна не как метод расчета, а как метод мышлению средство формирования и организации…

Такое владение математикой богатой культуры, понимание важности точных формулировок.

В дисциплине мало методов, но много определений и терминов. В основе дискретной математике 4 раздела:

1. Язык дискретной математики;

2. Логические функции и автоматы;

3. Теория алгоритмов;

4. Графы и дискретные экстремальные задачи.

Теория алгоритмов и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.

Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.

Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно сложные задачи (задачи перебора) и неразрешимые задачи.

Мы будем заниматься решением задач реальной размерности с учетом ограниченности временных и емкостных ресурсов ЭВМ.

Множества и операции над ними

Одно из основных понятий математики – множество.

Определение:

Множеством называется совокупность, набор предметов, объектов или элементов.

Множество обозначают: M,N …..

m1 , m2 , mn – элементы множества.

Символика

A M – принадлежность элемента к множеству;

А М – непринадлежность элемента к множеству.

Примеры числовых множеств:

1,2,3,… множество натуральных чисел N;

…,-2,-1,0,1,2,… - множество целых чисел Z.

множество рациональных чисел а.

I – множество иррациональных чисел.

R – множество действительных чисел.

K – множество комплексных чисел.

Множество А называется подмножеством В, если всякий элемент А является элементом В.

А В – А подмножество В (нестрогое включение)

Множества А и В равны, если их элементы совпадают.

A = B

Если А В и А В то А В (строгое включение).

Множества бывают конечные и бесконечные.

|М| - мощность множества (число его элементов).

Конечное множество имеет конечное количество элементов.

Пустое множество не содержит элементов: M = .

Пример: пустое множество:

1) множество действительных корней уравнения x2 +1=0 пустое: M = .

2) множество D, сумма углов которого 1800 пустое: M = .

Если дано множество Е и множество и мы рассматриваем все его подмножества, то множество Е называется униварсельным.

Пример: Если за Е взять множество книг то его подмножества: художественные книги, книги по математике, физики, физики …

Если универсальное множество состоит из n элементов, то число подмножеств = 2n .

Если , состоящее из элементов E, не принадлежащих А, называется дополненным.

Множество можно задать:

1) Списком элементов {a,b,c,d,e};

2) Интервалом 1x5;

3) Порождающей процедурой: xk =pksinx=0;

Операции над множествами

1) Объединение множеств А и В (союз или). Множество, состоящие из элементов, которые принадлежат хотя бы одному из множеств А или В называется объединенным.

А В

Отношение множеств наглядно иллюстрируется с помощью диаграмм Венна.

Диаграмма Венна – это замкнутая линия, внутри которой расположены элементы множества.


Объединение двух множеств

А
В
Объединение системы множеств можно записать

- объединение системы n множеств.

Пример: объединение множеств, когда они

заданы списком.

A = {a,b,d} B = {b,d,e,h} AUB = {a,b,c,d,e,h}

AUB AUB

Объединение трех множеств:


2) Пересечением множеств А и В называется множество, состоящие из элементов принадлежащих одновременно множествам А и В.

AB


Пересечение прямой и плоскости

1) если прямые || пл., то множество пересечений – единственная точка;

2) если прямые II пл., то M;

3) если прямые совпадают, то множество пересечений = множество прямой.

Пересечение системы множеств:

4) Разностью 2-х множеств А и В называется множество, состоящее из всех элементов А, не входящих в В.

С = А \ В


A \ B

A \ B
А
А \ В
B
A
В
А
В

A = {a,b,d}; B = {b,c,d,h} C = A \ B={a}.

В отличии от предыдущих операций разность: 1) строго двухместна;

2) не коммутативна, т.е. A\BB\A.

4) дополнение

E – универсальное множество.

-- дополнение

Операции объединения, пересечения и дополнения называются Булевыми.

Основные законы операций над множествами.

Некоторые свойства , похожи на алгебраические операции, однако многие свойства операций над множествами все же отличаются.

Основные свойства

1) AUB = BUA ; A B = B A –переместительный закон объединения и пересечения.

2) ( А UB)UC = AU(BUC); (A B) C=A (B C) – сочетательныйзакон.

3) А U =A, A = , A \ =A, A \ A=

1,2,3 – есть аналог в алгебре.

3.а) \ A = - нет аналога.

4) ; E \ A =; A \ E=; AUA=A; AA=A; AUE=E; AE=A;

5.а) свойства 1-4 очевидны и не нуждаются в доказательствах.

5) A ( BUC )=( A B )( A C ) – есть аналогичный распределительный закон относительно U.

Прямые произведения и функции

Прямым декартовым “х” множеством А и В называется множество всех пар (a;b), таких, что аА, bB.

С=AхВ, если А=В то С=А2 .

Прямыми «х» n множеств A1 x,…,xAn называется множество векторов (a1 ,…an ) таких, что a1 A1 ,…, An An .

Через теорию множеств введем понятие функции.

Подмножество FMx xMy называется функцией, если для каждого элемента хMx найдется yМу не более одного.

(x;y)F, y=F(x).

Соответствие между аргументом и функцией можно изобразить с помощью диаграммы Венна:


Определение: Между множествами MX и MY установлено взаимноодназночное соответствие, если каждому хMX соответствует 1 элемент yMY и обратное справедливо.

Пример: 1) (х,у) в круге



2) x = sinx

R- R

Пусть даны две функции f: A-B и g: B-C, то функция y:A-C называется композицией функций f и g.

Y=fogo – композиция.

Способы задания функций:

1) таблицы, определены для конечных множеств;

2) формула;

3) графики;

Способы 1-3 частные случаи выч. процедуры.

Пример процедуры, не относящейся к 3 способам задания функций n!

Взаимнооднозначное соответствие и мощности множеств.

Определение: Множества равномощны |A|=|B| если между ними взаимнооднозначное соответствие.

Теорема: Если для конечного множества А мощность равна |A| то количество всех подмножеств 2| A | =2n .

Множества равномощные N называются счетными, т.е. в них можно выполнить нумерацию элементов. N – множество натуральных чисел.

Множество N2 – счетно.

Доказательство

Разобьем N2 на классы

К 1-ому классу отнесем N1 (1; 1)

1-ый элемент 1-го множества

1-ый элемент

2-го множества


Ко 2-му классу N2 {(1;2), (2;1)}

К i-му классу Ni {(a;b)| (a+b=i+1}

Каждый класс будет содержать i пар.

Упорядоченный классы по возрастанию индекса i, а пары внутри класса упорядоченные по направлению первого элемента а.

Занумеруем последовательность классов, что и доказывает счетность множества N2 .

Аналогично доказывается счетность множеств N3 ,…,Nk .

Теорема Кантора:

Множество всех действительных чисел на отрезке [0;1] не является счетным.

Доказательство

Допустим это множество счетно изобразим его числа десятичными дробями.

}

1
1-я 0, a11 , a12 ….

2-я 0, а21 , a22 ….

………………….

Возьмем произвольное число 0,b1 ,b2 ,b3

1
b1 a11 , b2 a22 , …

Эта дробь не может выйти в последовательность т.к. отличается от всех чисел, значит нельзя пронумеровать числа на отрезке [0;1].

Множество нечетно и называется континуальным, а его мощность континуум.

Метод, используемый при доказательстве, называется диагональным методом Кантора.

Отношение

Пусть дано RMn – n местное отношение на множество М.

Будем изучать двухместные или бинарные отношения. Если а и b находятся в отношении R, то записывается а Rb.

Проведем отношение на множество N:

А) отношение выполняется для пар (7,9) (7,7_

Б) (9,7) не выполняется.

Пример отношения на множество R

А) отношение находится на одинаковом расстоянии от начала координат выполняется для пар (3; 4) и (2; 21)

Б) (3; 4) и (1; 6) не выполняется.

Для задания бинарных отношений можно использовать любые способы задания множеств.

Для конечных множеств используют матричный способ задания множеств.

Матрица бинарного отношения на множество M={1;2;3;4}, тогда матрица отношения С равна

С=

1 2 3 4
1 1 1 1 1
2 0 1 1 1
3 0 0 1 1
4 0 0 0 1

101

010

001

С=

Отношение Е заданные единичной матрицей называется отношением равенства.

Отношением назовется обратным к отношением R, если aj Rai тогда и только тогда, когда aj Rai обозначают R-1 .

Свойства отношений

    Если aRa == очн. рефлексивное и матрица содержит на главной диагонали единицу

если ни для какого а не … == отношение антирефлексивное

главная диагональ содержит нули

Пр. отношнний

рефлексивное

антирефлексивное

2. Если из aRb следует bRa, == отношение R симметричное. В матрице отношения элементы

сумм Cij =Cji . Если из aRb и bRa следует a=b == отношение R – антисимметричное.

Пр. Если а b и ba == a=b

  1. Если дано a,b,c из aRb и aRc следует aRC == отношение называемое транзитивным.
  2. Отношение называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пр. отношение равенства E

5. Отношение называется отношением нестрогого порядка, если оно рефлексивно,

антисимметрично и транзитивно. Отношение называется отношением строгого порядка,

если оно антирефлексивно, антисимметрично и транзитивно.

Пр. а) отношение u для чисел отношение нестрогого

б) отношение u для чисел отношение строгого

Лекция: Элементы общей алгебры

Р. Операции на множествах

Множество М вместе с заданной на нем совокупностью операций W = {j1 ,…, jm }, т.е. система А = {М1 ;j1 ,…, jm } называется алгеброй. W - сигнатура.

Если M1 M и если значения j( M1 ), т.е. замкнуто == A1=1 ;j1 ,…, jm } подалгебра A.

Пр. 1. Алгебра (R;+;*) – называется полем действительных чисел обе операции бинарные и

поэтому тип этой алгебры (2;2)

    B=(Б;;) – булева алгебра. тип операций (2;2;1)

Р. Свойства бинарных алгебраических операций

запись ajb.

1. (ajb)jc=aj(bjc) – ассоциативная операция

Пр. +,x – сложение и умножения чисел ассоциативно

2. ajb = bja – коммутативная операция

Пр. +,x – коммутат.

–; : – некоммут.

умножение мат ABBA – некоммутативно.

3. aj(bjc) = (ajb) j(ajc) –дистрибутивность слева

(ajb)jc) = (ajс) j(bjc) –дистрибутивность справа.

Пр. (ab)e =ae be – возведение в степень дистрибутивного отношения произведения справа

но не abc ab ac

Р. Гомоморфизм и изоморфизм

Алгебры с разными членами имеют различные строения. Алгебры с одинаковыми членами имеют сходство. Пусть даны две алгебры A=(K; jI ) и B=(M; jI ) – одинакового типа.

Пусть отображение Г:K-M при условии Г(jI )= jI (Г), (1) т.е. результат не зависит от последовательности возможных операций: Или сначала вып. операции jI b А и затем отображении Г, или сначала отображение Г, или сначала отображение Г и затем отображение jI в В.

Тогда условие (1) называется Гомоморфизмом алгебры А в алгебру В.

Когда существует взаимооднозначный гомоморфизм его называют изоморфизмом. В этом случае существует обратное отображение Г-1 .

Мощности изоморфных алгебр равны.

Пр. Алгебры (QN ; +) и (Q2; +) – отображение типа и условие (1) запишется как 2(а+b)=2а+2b.

Отношение изоморфизма является отношением эквивалентности на множестве алгебр, т.е вычисление рефлексивное, симметричности и транзитивности. Изоморфизм важнейшее понятие в математике. Полученные соотношения в алгебре А автоматически …. на изоморфные алгебры.

Скачать архив с текстом документа