Линейные системы уравнений
СОДЕРЖАНИЕ: Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.Реферат
Тема: «Линейные системы уравнений»
Содержание
1. Уравнения, векторы, матрицы, алгебра
2. Умножение матриц как внешнее произведение векторов
3. Нормы векторов и матриц
4. Матрицы и определители
5. Собственные значения и собственные векторы
6. Ортогональные матрицы из собственных векторов
7. Функции с матричным аргументом
8. Вычисление проекторов матрицы
Пример использования числовых характеристик матриц
10. Оценка величины и нахождение собственных значений
Литература
1. Уравнения, векторы, матрицы, линейная алгебра
Многие из рассмотренных нами задач сводились к формированию систем линейных алгебраических или дифференциальных уравнений, которые требовалось решить. Пока системы включали в себя не более трех-четырех переменных, их несложно было решать известными классическими методами: методом определителей (Крамера) или методом исключения переменных (Гаусса). С появлением цифровых вычислительных машин порядок алгебраических уравнений, решаемых методом исключений вырос в несколько десятков раз. Однако выявилось множество причин, по которым решение таких систем получить не удавалось. Появившиеся различные модификации метода исключения не привели к существенным улучшениям ситуации с получением решений. Появление же систем с количеством переменных более многих сотен и тысяч заставили обратиться и развивать итерационные методы и методы эквивалентных векторно-матричных преобразований применительно к решению линейных систем алгебраических уравнений.
Основные теоретические результаты были получены путем обобщения известных классических методов функционального анализа и алгебры конечномерных линейных пространств на векторно-матричные представления систем линейных алгебраических и дифференциальных уравнений.
Общая форма записи линейной системы алгебраических уравнений с n неизвестными может быть представлена следующим образом:
Здесь – неизвестные,
– заданные числа,
– заданные числовые коэффициенты.
Последовательность записи уравнений в системе и обозначение неизвестных в последней не играет роли. В этом плане удобно при анализе и исследованиях системы использовать упорядоченную индексацию натурального ряда для неизвестных, значений правых частей и коэффициентов в уравнениях, однозначно привязывая, тем самым, каждое слагаемое и каждое уравнение к определенной позиции в общей записи. В результате можно выделить в данной записи уравнений три позиционно упорядоченных неделимых объекта:
список переменных – ,
список правых частей – и
матрицу коэффициентов – .
Первые два объекта в линейной алгебре называют вектором-строкой , а второй – квадратной матрицей.
Операции с векторами, матрицами должны быть определены так, чтобы однозначно отображать допустимые эквивалентные преобразования исходной системы алгебраических уравнений. В предельных случаях задания векторов и матриц: , – аддитивные и мультипликативные операции должны переходить в аналогичные операции со скалярными величинами.
Если рассмотреть i- тую строку исходной системы
,
то в ней кроме упорядоченного расположения компонент присутствует упорядоченное по индексу j размещение коэффициентов , которые могут рассматриваться как вектор-строка . Результатом суммы покомпонентного перемножения двух векторов-строк должно быть число. В линейной алгебре такая операция с векторами определена и названа скалярным или внутренним произведением векторов:
.
Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований , и коммутативно.
Определение скалярного произведения позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:
или
.
Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца принята за каноническую (основную).
Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице . Теперь для представления исходной системы уравнений в виде несложно определить векторно-матричную операцию , результатом которой является вектор с i- той компонентой, равной .
Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.
2. Умножение векторов и матриц
Среди n- мерных векторов и векторных операций над ними важно выделить сумму n векторов, умноженных на числовые константы:
,
которая при произвольном выборе в частности может оказаться нулевым вектором (с нулевыми компонентами) или одним из суммируемых векторов . Если нулевой вектор при суммировании не нулевых векторов можно получить лишь в случае, когда все , то такие векторы в наборе называют линейно независимыми . Такими векторами в частности будут единичные векторы , у которых все компоненты нулевые, кроме единичной компоненты, расположенной на j- строке.
Линейно независимый набор единичных векторов с геометрической точки зрения можно рассматривать как n- мерную систему координат. Набор компонент любого вектора в этой n- мерной системе определяет координаты точки конца вектора, исходящего из начала координат, а также являются длинами проекций вектора на координатных осях.
Среди матриц размера и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения . Векторы слева и справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x не обязаны быть равными компонентам вектора y . Последнее означает, что умножение вектора x на матрицу A вызвало изменение длины и направления вектора x . Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:
.
Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:
,
где – элемент матрицы С , равный скалярному произведению вектор-строки матрицы В на вектор-столбец матрицы А .
Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.
3. Нормы векторов и матриц
Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций:
,
где – компоненты вектора ,
– евклидова норма вектора, его длина.
В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.
Деление вектора на величину его нормы называют нормированием , т.е. приведением вектора к единичной длине.
Норма матрицы в принципе тоже может быть определена в виде корня квадратного из суммы квадратов ее элементов или другими выражениями со свойствами расстояний. Однако в ряде случаев работы с векторно-матричными выражениями нормы векторов и матриц должны быть согласованными ввиду того, что результатом произведения матрицы на вектор является опять же вектор. Если выражение для нормы вектора принято, то
,
где функция sup говорит о том, что из всех отношений норм, стоящих в числителе и знаменателе, взятых при любом векторе x , кроме нулевого, выбирается наименьшее, т.е. это функция выбора нижней границы значений. Согласованная матричная норма для евклидовой нормы вектора удовлетворяет неравенству
.
Нормы вектора и матрицы служат, в основном, для сопоставительной оценки матриц и векторов, указывая на возможный диапазон представления строгих числовых характеристик. К числу последних, в первую очередь, нужно отнести определители матриц, собственные значения и собственные векторы матриц и ряд других.
4. Матрицы и определители
Упорядоченный набор коэффициентов из системы линейных алгебраических уравнений используется для получения числовой характеристики, величина которой инвариантна по отношению к эквивалентным преобразованиям системы. Речь идет об определителе матрицы. Важное свойство определителей матрицы обнаруживается в связи с вычислением произведения матриц:
Учитывая это свойство и зная, что определитель единичной матрицы det(E )=1, можно найти матрицу B и ее определитель из уравнения:
откуда следует, что и .
Из свойств определителей нелишне помнить и такие:
где – транспонированная матрица A ,
n – размер квадратной матрицы A ,
– матрица перестановки строк или столбцов,
s, c= 0,1,…, n – число выполненных перестановок строк и / или столбцов.
Если обратная матрица исходной системы уравнений определена, то, используя эквивалентные преобразования их векторно-матричной записи, решение уравнений можно представить в следующем виде:
Умножив вектор правых частей на обратную матрицу, получим вектор решения.
Классический способ вычисления обратной матрицы использует определители и осуществляется по формуле:
,
где – алгебраическое дополнение, а – минор матрицы A , получаемый вычислением определителя матрицы A , в которой вычеркнуты j- тая строка и i- тый столбец.
Такой способ вычисления определителя представляет в основном теоретический интерес, так как требует выполнения неоправданно большого числа операций.
Очень просто вычисляется определитель, если матрица диагональная или треугольная. В этом случае определитель равен произведению диагональных элементов. Кстати и решения уравнений, имеющих такие матрицы коэффициентов, получаются тривиально. Поэтому основные усилия разработчиков методов решения алгебраических уравнений направлены на поиск и обоснование эквивалентных преобразований матрицы с сохранением всех ее числовых характеристик, но имеющих в конце преобразований диагональную или треугольную форму.
5. Собственные значения и собственные векторы
Рассмотрим теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования.
Найдем вектор, который под воздействием матрицы A изменяет только свою величину, но не направление. Для системы уравнений это означает, что вектор решения должен быть пропорционален с некоторым коэффициентом вектору правой части:
В результате несложных преобразований получены однородные векторно-матричные уравнения в столбцовой и в строчной формах с некоторым числовым параметром и неизвестным вектором-столбцом x и вектором-строкой , представляющих собственное состояние системы. Однородная система может иметь отличное от нуля решение лишь в том случае, когда определитель ее равен нулю. Это следует из формул получения решения методом определителей (Крамера), в которых и определитель знаменателя, и определитель числителя оказываются равными нулю.
Полагая, что решение все же существует, т.е. и , удовлетворить уравнению можно только за счет приравнивания нулю определителя однородной системы:
Раскрыв определитель и сгруппировав слагаемые при одинаковых степенях неизвестного параметра, получим алгебраическое уравнение степени n относительно :
Это уравнение называется характеристическим уравнением матрицы и имеет в общем случае n корней, возможно комплексных, которые называются собственными значениями матрицы и в совокупности составляют спектр матрицы . Относительно n корней различают два случая: все корни различные или некоторые корни кратные.
Важным свойством характеристического уравнения матрицы A является то, что согласно теореме Гамильтона-Кели, матрица A удовлетворяет ему:
где – k- тая степень матрицы.
Подставляя каждое в однородную систему, получим векторно-матричные уравнения для нахождения векторов или векторов-строк . Эти векторы называются соответственно правыми собственными векторами и левыми собственными векторами матрицы.
Решение однородных уравнений имеет некоторую специфику. Если (как в равной мере и ) является решением, то, будучи умноженным на произвольную константу, оно тоже будет являться решением. Поэтому в качестве собственных векторов берут такие векторы, которые имеют норму, равную единице, и тогда:
Если все собственные числа различны, то собственные векторы матрицы A образуют систему n линейно независимых векторов таких, что
6. Ортогональные матрицы из собственных векторов
Из правых собственных векторов можно составить матрицу T, а из левых – матрицу , которые обладают уникальными свойствами по отношению к матрице A .
Умножив матрицу A слева на матрицу , а справа – на матрицу T , после несложных преобразований получим:
.
Каждое скалярное произведение в матрице, принимая во внимание линейную независимость собственных векторов, полученных для различных собственных значений, можно преобразовать так:
Поэтому, результатом преобразования матрицы A будет диагональная матрица с собственными значениями, расположенными на диагонали:
Если вместо A взять единичную матрицу и проделать аналогичные преобразования, то станет очевидным равенство , откуда следует . Последнее позволяет для преобразования матрицы A в диагональную обходиться только системой правых собственных векторов-столбцов:
Последнее показывает, что умножение матрицы A на слева и на S справа, где S – произвольная не особая матрица, преобразует ее в некоторую матрицу B , которая имеет определитель, равный определителю матрицы A . Такие преобразования матриц называют эквивалентными (подобными ).
Продолжая использовать T- матрицу, несложно получить следующие важные результаты:
.
7. Функции с матричным аргументом
Пусть теперь задана некоторая матричная функция от матрицы A :
.
С другой стороны очевидно и обратное
,
где – матрица с одной единицей на i -том месте диагонали ().
где – проекторы матрицы A , образуемые умножением одноименных правых и левых собственных векторов по правилам умножения прямоугольных матриц с размерами соответственно и . Сумма проекторов .
Проекторы обладают свойствами идемпотентных матриц , т.е. матриц, все степени которых равны первой. Для невырожденных проекторов () матрицы A () справедливо:
Представление функции от матрицы A в виде взвешенной суммы проекций называется спектральным разложением матричной функции по собственным значениям матрицы A :
.
Если в качестве матричных функций взять и , то их спектральные разложения будут следующими:
8. Вычисление проекторов матрицы
Проекторы матрицы можно также вычислить, воспользовавшись интерполяционным многочленом Лагранжа с матричным аргументом:
По известному спектру проекторы матрицы можно найти и методом неопределенных коэффициентов. Для чего выбирают такие функции от матрицы A , которые вычисляются очевидным образом, например, такие:
Записывая разложение для каждой функции, получим следующую систему линейных уравнений относительно проекторов:
В случае, когда в спектре матрицы имеются кратные собственные значения, вычисление проекторов осуществляется по интерполяционным формулам Лагранжа, учитывающим еще и заданные значения производных в отдельных точках. Разложение матричной функции по значениям ее на спектре в этом случае имеет вид:
где – значения i -тых произ-водных функции в точках, соответствующих различным (не кратным) корням характеристического многочлена,
– число кратных корней ,
– проекторы кратных корней, в выражении которых содержатся
– проекторы различных корней.
9. Пример использования числовых характеристик матриц
Знание собственных значений матрицы и ее проекторов позволяет выполнять вычисления аналитических функций получающихся, например, при решениях систем линейных дифференциальных уравнений, при исследованиях эквивалентных матричных преобразований и пр.
Для примера построим матрицу с заданными собственными значениями и собственными векторами, основанными на векторах .
Сначала необходимо убедиться в линейной независимости исходных векторов и добиться того, чтобы левые и правые одноименные собственные векторы оказались ортогональными, т.е. . Проверка линейной независимости может быть объединена с процессом ортогонализации заданной системы векторов методом Грама-Шмидта .
Для заданных векторов построим систему векторов таких, что , следующим образом:
Откуда последовательно находятся коэффициенты :
Взаимной ортогональности векторов v можно было бы добиваться и так, чтобы каждый был ортогонален каждому , положив и приравняв нулю скалярные произведения :
Определитель этой системы называют определителем Грама :
,
где - матрица, в общем случае комплексно сопряженная с матрицей
, составленной из заданных векторов.
Если грамиан положителен, а он всегда неотрицателен, то векторы линейно независимы, а если равен нулю, то зависимы. Это один из способов проверки конкретного набора векторов на их линейную независимость.
Для заданного выше набора векторов определитель произведения матрицы X на транспонированную X * будет равен
Таким образом, заданная система векторов линейно независима. Для построения ортонормированной системы векторов последовательно вычислим коэффициенты и ортогональные векторы:
После нормирования векторы образуют правую систему собственных векторов. Транспонированная Т -матрица с этими векторами есть -матрица (); ее строки являются собственными левосторонними векторами:
.
Внешнее (матричное) произведение каждого нормированного вектора самого на себя дает нам проекторы искомой матрицы:
Умножая каждое собственное значение из заданного набора на свой проектор и суммируя, получим:
.
Аналогично получается обратная матрица:
.
С помощью этих же проекторов вычисляется любая аналитическая функция, аргументом которой является матрица A :
.
10. Оценка величины и нахождение собственных значений
Краткое рассмотрение основных теоретических положений линейной алгебры позволяет сделать следующие выводы: для успешного решения систем линейных алгебраических уравнений и вычислений матричных функций необходимо уметь находить ее собственные значения и собственные векторы.
Для любой матрицы A с действительными компонентами и любого ненулевого вектора v существует отношение Рэлея, связывающее скалярное произведение векторов v и Av с минимальным и максимальным собственными значениями:
.
К высказанному необходимо сделать еще ряд замечаний, связанных со случаями, когда исходная матрица имеет кратные собственные значения или оказывается вырожденной.
Характеристическое уравнение матрицы A с кратным корнем можно записать в виде
.
На основании этой записи можно составить минимальное характеристическое уравнение , для которого матрица A также является корнем:
.
Особенности в части определения собственных значений и векторов обычно возникают в несимметричных матрицах (). Некоторые из них никакими подобными преобразованиями не удается свести к диагональной. Например, не поддаются диагонализации матрицы n- го порядка, которые не имеют n линейно независимых собственных векторов. Однако любая матрица A размера с помощью преобразования подобия может быть приведена к прямой сумме жордановых блоков или к канонической жордановой форме :
,
где A – произвольная матрица размера ;
– жорданов блок размера ;
V – некоторая невырожденная матрица размера .
Характеристическое уравнение жорданова блока размера независимо от количества единиц в верхней диагонали записывается в виде произведения одинаковых сомножителей и, следовательно, имеет только кратных корней:
.
Если выразить матрицу V в форме вектора с компонентами в виде векторов-столбцов , то из равенства AV=VJ для каждого жорданового блока следует соотношение
.
Здесь в зависимости от структуры верхней диагонали, в которой может быть либо ноль, либо единица. Если жордановы блоки имеют размер , то мы имеем случай симметричной матрицы или матрицы с различными собственными значениями.
При поиске решений систем линейных уравнений с несимметричными матрицами, последние стремятся теми или иными приемами свести к выражению с симметричными матрицами.
Один из возможных подходов к решению несимметричных линейных систем состоит в замене исходной системы эквивалентной системой:
.
Недостаток этого подхода состоит в том, что мера обусловленности произведения матрицы A на свою транспонированную, оцениваемая отношением , оказывается больше, чем у матрицы A .
Под мерой обусловленности понимают отношение наибольшего собственного значения матрицы к наименьшему. Это отношение влияет на скорость сходимости итерационных процедур при решении уравнений.
Итак, основными алгебраическими системами уравнений можно считать неоднородные системы уравнений с симметричными матрицами коэффициентов.
Литература
1. Вержбицкий В.М. Основы численных методов: Учебник для вузов – 3-е изд. М: Высшая школа, 2009. – 840 с.
2. Самарcкий А.А. Задачи и упражнения по численным методам. Изд. 3 Изд-во: КомКнига, ЛКИ, 2006. – 208 с.
3. Турчак Л.И., Плотников П.В. Основы численных методов. Изд-во: ФИЗМАТЛИТ®, 2003. – 304 с.
4. Хеннер Е.К., Лапчик М.П., Рагулина М.И. Численные методы. Изд-во: «Академия/Academia», 2004. – 384c.
5. Чистяков С.В. Численные и качественные методы прикладной математики. СПб: 2004. – 268 с.