Мембранное равновесие Доннана (Доклад)
СОДЕРЖАНИЕ: Мембранное равновесие, связанное с различием концентрации солей внутри и вне клеток, известно давно. В 1911 г. Ф. Доннан объяснил это явление, впоследствии названное его именем.Мембранное равновесие, связанное с различием концентрации солей внутри и вне клеток, известно давно. В 1911 г. Ф. Доннан объяснил это явление, впоследствии названное его именем.
Мембранное равновесие Доннана связано с переносом некоторого количества вещества низкомолекулярного электролита внутрь пространства, содержащего полимер, и, вследствие этого, неравномерного распределения концентраций этого электролита по обе стороны полупроницаемой мембраны.
Пусть в некоторый начальный момент времени концентрации ионов низкомолекулярного и высокомолекулярного соединений по обе стороны мембраны распределяются следующим образом:
Рис 1.
В левой части сосуда, разделенного полупроницаемой мембраной, находится раствор полимера, который в результате диссоциации представлен поликатионом R(Z+) и противоионом Cl– , концентрации которых равны соответственно C1 и ZC1 . В левой части – раствор низкомолекулярного электролита, например KCl, с концентрацией С2 , диссоциирующий на К+ и Cl– . При установлении равновесия вследствие диффузии в такой системе малые ионы K+ перемещаются преимущественно из правой части сосуда в левую. Макрокатионы R(Z+) не могут проникать через мембрану, поэтому для сохранения электронейтральности вместе с катионами K+ справа налево происходит перемещение избыточного числа анионов Cl– . В результате этих процессов концентрация низкомолекулярного электролита в растворе ВМС повышается:
Рис 2.
Условием равновесия является равенство произведений концентраций электролитов в левой и правой части сосуда, разделенного полупроницаемой мембраной:
[K+ ]внутр. [Cl– ]внутр. = [K+ ]внеш. [Cl– ]внеш.
Подставляя обозначения из рис.2, имеем уравнение:
X (ZC1 + X) = (C2 – X)2
Решая это уравнение относительно X, получаем:
C2 2
X = .
ZC1 + 2C2
Это и есть уравнение Доннана, которое показывает количество низкомолекулярного вещества, переносимого в фазу ВМС через полупроницаемую мембрану. Из него следует вывод, что низкомолекулярный электролит распределяется неравномерно по обе стороны мембраны. Перенос вещества всегда существует из внешнего раствора во внутренний, в результате чего во внутреннем растворе наблюдается более высокая концентрация переносимых электролитов по сравнению с внешним раствором. Этим же объясняется некоторый избыток осмотического давления в растворах, содержащих ВМС и электролиты.
Если концентрация низкомолекулярного электролита намного больше концентрации полимера (С2 C1 ), то X = C2 /2 , т.е. при малых концентрациях макроионов и больших концентрациях малых ионов наблюдается равномерное распределение малых ионов по обе стороны мембраны.
При обратном соотношении концентраций (C2 C1 ), XZC1 = C2 2 , откуда следует, что перенос X очень мал и обратно пропорционален величине ZC1 .
Осмотическое давление раствора в левом отсеке складывается из осмотического давления, обусловленного присутствием ВМС и низкомолекулярного соединения:
p 1 = p 1 (ВМС) + p 1 (НМС) – p 2 (НМС).
Та часть осмотического давления крови, которая создается растворенными в ней белками, называется онкотическим давлением. Хотя по абсолютной величине оно, как правило, незначительно (например, для плазмы крови на долю осмотического давления, создаваемого растворами белков приходится всего лишь 0,5 – 1 %), эта составляющаяимеет большое физиологическое значение.
Все биологические мембраны полупроницаемы: в нормальных условиях проницаемы для неорганических солей и воды и непроницаемы для белков и полисахаридов. Этот эффект является одной из причин неравномерного распределения ионов вне и внутри клетки.