Мультипликативные полугруппы неотрицательных действительных чисел
СОДЕРЖАНИЕ: Множество неотрицательных действительных чисел как интерпретируемое подмножество R. Делимость в мультипликативных полугруппах. Строение числовых НОД и НОК полугрупп. Изучение мультипликативных полугрупп неотрицательных действительных чисел с 0 и 1.Содержание
Введение 3
Основные понятия и определения 4
Глава 1. Делимость в мультипликативных полугруппах_ 7
§1. Свойства НОД и НОК_ 7
§ 2. Строение числовых НОД и НОК полугрупп_ 11
Глава 2. Мультипликативные полугруппы неотрицательных чисел со свойствами (*) и (**) 15
Библиографический список 19
Введение
В математических исследованиях множество действительных чисел R очень популярно как бескрайний источник простых примеров и как множество, использующееся во многих структурах.
Рассматриваемое в данной работе множество неотрицательных действительных чисел – это интересное легко интерпретируемое подмножество R .
Как известно, различные подалгебры множества R + (например, полугруппа N ) исследовались ранее. В этой работе мы продолжим изучение мультипликативных полугрупп неотрицательных действительных чисел с 0 и 1.
Работа состоит из двух глав. Первая глава содержит некоторые свойства наибольшего общего делителя и наименьшего общего кратного элементов целой полугруппы (§1). В этой же главе говорится о строении НОД и НОК полугрупп. Во второй главе получена топологическая классификация мультипликативных полугрупп S
R
+
, обладающих одним из введенных специфических свойств:
(*) (a
b
);
(**) (0a
b
).
Основные понятия и определения
Определение 1. Пусть Х – множество произвольной природы и t – семейство подмножеств Х , называемых открытыми , удовлетворяющее условиям:
1) пересечение конечного числа множеств из t принадлежит t,
2) объединение любого множества множеств из t принадлежит t,
3) и t.
Тогда называется топологическим пространством
, t – топологией
на Х
.
Определение 2. Дополнения открытых множеств в Х называются замкнутыми множествами .
Определение 3.
Пусть – топологическое пространство и
. Введем на множестве Х
1
топологию t1
. Открытыми в пространстве
назовем все множества вида
, где U
– произвольное открытое множество в Х.
Тогда пространство
называется подпространством
топологического пространства
, а топология t1
– топологией, индуцированной
топологией t на множество Х
1
.
Определение 4.
Семейство открытых множеств в топологическом пространстве называется базой топологии
t, если любое открытое множество в Х
является объединением множеств из этого семейства.
Пример.
На числовой прямой R
с естественной (евклидовой) топологией открытыми множествами являются всевозможные объединения интервалов, они и образуют базу этой топологии. На множестве неотрицательных чисел R
+
эта топология индуцирует топологию, в которой открытым множеством будет, например, R
+
(-1, 1).
Определение 5. Пространство Х 1 называется плотным подпространством пространства Х , если любое непустое открытое множество в Х содержит точки множества Х 1 .
Очевидно, Х 1 плотно в Х , если каждая точка подпространства Х 1 является предельной точкой множества Х .
Определение 6. Множества в топологическом пространстве, являющиеся одновременно открытыми и замкнутыми, называются открыто-замкнутыми .
Определение 7. Топологическое пространство Х называется связным если открыто-замкнутыми множествами в нем являются лишь Х и .
Определение 8. Множество Х 1 в топологическом пространстве Х называется связным , если оно связно как топологическое подпространство пространства Х .
Примеры:
1. Множество точек плоскости является связным, если в нем любую пару точек можно соединить кривой.
2. На числовой прямой связными множествами являются лишь промежутки.
Определение 9 . Топологическое пространство называется нульмерным , если оно обладает базой из открыто-замкнутых множеств.
Пример. Дискретное топологическое пространство, в котором все его подмножества являются открытыми, – нульмерно.
Далее везде будем обозначать символом S мультипликативную полугруппу.
Определение 10
. Множество S
с бинарной операцией умножения называется мультипликативной полугруппой
, если эта операция обладает свойством ассоциативности, т.е. .
Определение 11
. Элемент bS
называется делителем
элемента а
S
, если
для некоторого
. При этом говорят, что
делится на
, или
делит
(
|
).
Определение 12
. Общий делитель элементов и
, делящийся на любой их общий делитель, называется наибольшим общим делителем элементов
и
и обозначается НОД
.
Определение 13
. Элемент
S
называется кратным
элементу
S
, если a
делится на b
.
Определение 14
. Общее кратное элементов и
, на которое делится любое их общее кратное, называется наименьшим общим кратным элементов
и
и обозначается НОК
.
Определение 15 . Полугруппа S называется НОД -полугруппой (НОК -полугруппой ), если любые два элемента из S имеют наибольший общий делитель (наименьшие общее кратное).
Определение 16
. Элемент из S
называется неприводимым
, если он имеет ровно два делителя 1 и а.
Неприводимые элементы не представимы в виде произведения неединичных элементов, т.е. если
.
Определение 17
. Элемент из S
называется простым
, если
. Очевидно, простые элементы неприводимы.
Определение 18 . Полугруппа S называется топологической полугруппой , если на множестве S введена топология, и топологическая и алгебраическая структуры в S согласованы, т.е.
1) S , – полугруппа;
2) S – топологическое пространство;
3) полугрупповая операция непрерывна в S :
.
Глава 1. Делимость в мультипликативных полугруппах
§1. Свойства НОД и НОК
Пусть S – коммутативная мультипликативная несократимая полугруппа с 1 и без делителей единицы. Такие полугруппы называются целыми , или коническими .
Элементы и
из S
называются взаимно простыми
, если НОД
(
,
)=1.
Предварительно рассмотрим простейшие свойства отношения делимости в целых полугруппах.
Свойства делимости в целых полугруппах
(1) ;
(2) – рефлексивность
;
(3) – антисимметричность
;
(4) – транзитивность
;
(5) ;
(6) ;
(7) Любой простой элемент неприводим ;
(8) р неприводим
;
Свойство 1. НОД и НОК нескольких элементов определены однозначно, если существуют.
Доказательство.
Проведем доказательство для НОД двух элементов а
и b
из S
. Пусть (a
,b
) и
(a
,b
). Тогда из определения НОД следует
и
. По свойству антисимметричности имеем
.
Свойство 2. .
Доказательство.
Импликации
и
очевидны. Пусть
, т.е.
для некоторого
. Очевидно, b
– общий делитель а
и b
. Возьмем произвольный общий делитель с
элементов а
и b
. Для него существуют такой элемент
, что и
. Таким образом, с
делит b
. Это и означает, что
.
Аналогично доказывается
.
Следствие 1. .
Следствие 2.
и
.
Свойство 3.
и
.
Доказательство следует из коммутативности операции умножения и свойств делимости.
Свойство 4.
.
Доказательство. Обозначим d 1 =НОД (НОД (a , b ), c ). Так как d 1 является общим делителем НОД (a , b )иc , то d 1 – общий делитель и для элементов a , b и c . Верно и обратно: любой общий делитель этих трех элементов является общим делителем для НОД (a , b )иc . Аналогичным свойством обладает и элемент d 2 =НОД (a , (НОД (b , c )). Тогда элементы d 1 и d 2 делят друг друга. По свойству антисимметричности делимости получаем d 1 =d 2 .
Свойство 5.
.
Доказательство. Обозначим k 1 =НОК (НОК (a , b ), c ). Так как k 1 является общим кратным элементов НОК (a , b )иc , то k 1 – общее кратное и для элементов a , b и c . Верно и обратно: любое общее кратное этих трех элементов является общим кратным для НОК (a , b )иc . Аналогичным свойством обладает и элемент k 2 =НОК (НОК (a , b ), c ). Тогда элементы k 1 и k 2 делят друг друга. По свойству антисимметричности делимости получаем k 1 =k 2 .
Свойство 6. Если элементы а и b не взаимно просты, то а и b имеют общий делитель, не равный 1.
Доказательство. По условию НОД (a , b )= d 1. Тогда по определению d и есть не равный единице общий делитель а и b .
Свойство 7.
=
.
Доказательство. Обозначим d =НОД (a , b ). По свойству (6) делимости элемент с d делит любой общий делитель элементов ас и b с , следовательно, является их НОД. Свойство доказано.
Свойство 8.
Если , то
.
Доказательство.
Из условия
следует, что d
делит любой общий делитель элементов а
и b
и
. Тогда по свойству (6) делимости элемент
делит любой общий делитель элементов
, следовательно, является их НОД. Свойство доказано.
Свойство 9.
Если и
, то
.
Доказательство.
Пусть НОД
и НОД
(а,b) = 1, тогда среди делителей элементов b
и с
нет делителей элемента а
. Следовательно, и среди делителей элемента bc
нет делителей элемента а
, что и означает, что
.
Свойство 10.
Если , то
для любых
N
.
Доказательство.
Докажем, что
методом математической индукции. Пусть m
= 1, тогда
по условию, т.е. база индукции верна. Предположим, что
для всех k
m
. Покажем, что
при k
= m.
по свойству (10) для с
= b
. Отсюда,
для всех
N
.
по свойству 3 делимости. Аналогичными рассуждениями получаем
для любого
N
. Следовательно,
.
Свойство 11.
Если , то
для любого
.
Доказательство.
Пусть
, тогда а = sd и c = td для некоторых s,t
S таких, что НОД(s,t) = 1. Поскольку
, то НОД(s,b) = 1 и по свойству 9 НОД(s,tb) = 1. Следовательно,
. Свойство доказано.
Свойство 12. Существование НОК (a , b ) влечет существование НОД (a , b ) и равенство НОД (a , b ) НОК (a , b ) = ab .
Доказательство.
Если хотя бы одно из чисел или
равно 0, то
и равенство справедливо. Пусть элементы
и
ненулевые и
. Поскольку
- общее кратное чисел
и
, то
для некоторого
. Так как
и
, то
- общий делитель
и
. Докажем, что
делится на любой общий делитель элементов
и
. Пусть
- произвольный общий делитель чисел
и
, т.е.
и
для некоторых
. Поскольку
- общее кратное элементов
и
, то
. Так как
, то
для некоторого
. Отсюда
. Следовательно,
, и, значит,
НОД
(
).
Предложение 1
. Полугруппа является НОК-полугруппой тогда и только тогда, когда
есть НОД-полугруппа.
Доказательство
. По свойству 12 достаточно доказать, что любая НОД-полугруппа является НОК-полугруппой. Пусть есть НОД-полугруппа. Возьмем произвольные
. Если хотя бы одно из чисел
равно 0, то
. Рассмотрим случай
и
. Обозначим
. Тогда
и
для некоторых
. Поскольку
по свойству 7, то
. Положим
. Число
является общим кратным элементов
и
. Осталось показать, что на
делится любое общее кратное
и
. Возьмем произвольное общее кратное
элементов
и
, т. е.
для некоторых
. Тогда
, т.е.
(поскольку
). По свойству 11 имеем
, значит,
для некоторого
. Поэтому
, т.е.
.
§ 2. Строение числовых НОД и НОК полугрупп
Далее будем рассматривать множество всех неотрицательных действительных чисел R
+
и мультипликативную полугруппуS
R
+
, содержащую 0 и 1, с топологией, индуцированной топологией числовой прямой.
Лемма 1
. Если
S
связно, то
S
= или
S
=
R
+
.
Доказательство.
Пусть S
связное множество в R
+
. Тогда S
является промежутком. Поскольку и
, то
. Если в S
нет элемента c 1, то
. В противном случае числа
(
N
) принимают сколь угодно большие значения. Поскольку S – промежуток, то
для всех
N
. Отсюда
R
+
.
Лемма 2.
Если несвязно, то
.
Доказательство.
Предположим, что
.Тогда в силу несвязности
существуют такие числа
, что
и
. Так как
, то
. Тогда
. Полученное противоречие завершает доказательство.
Лемма 3.
Если
, то
или
=R
+
.
Доказательство.
Очевидно, - полугруппа. Пусть
и
. Тогда существует элемент
. Докажем, что
. Возьмем произвольное
. Пусть натуральное N
таково, что
. Тогда из
следует
. Отсюда
. Лемма доказана.
Лемма 4. Пусть S – НОД-полугруппа и пространство S несвязно. Тогда:
1)
(0,с
)S
для любого
,
2)
если
, то и
для любого
.
Доказательство.
1) Если в интервале (0,1) нет элементов из S
, то заключение очевидно. Пусть (0,1)S
.Предположим, что (0,c
)S
для некоторого
. Не теряя общности, будем считать, что
. Так как S
несвязно, то по лемме 2 существует s
[0, 1]\S
. Возьмем в S
ненулевой элемент
и положим b
=as
S
.
Пусть d
=НОД
(a
,
b
). Поскольку 0s
1, то sn
0 при n
. Тогда sN
c
для некоторого натурального N
, и, значит, sN
S
. По свойству 8, пункт (3), НОД
(a
/
d
,
b
/
d
)=1. Поскольку b
/
d
:a
/
d
=s
S
, то элемент a
/
d
необратим в S
. Очевидно, необратимым является и (a
/
d
)N
. По свойству 11, пункт (5), имеем НОД
((a
/
d
)N
, (b
/
d
)N
)=1. Из (b
/
d
)N
:((a
/
d
)N
=sN
S
следует, что НОД
((a
/
d
)N
, (b
/
d
)N
)=(a
/
d
)N
. Значит, элемент (a
/
d
)N
ассоциирован с 1, т. е. обратим. Получили противоречие. Следовательно, (0, с
)
S
для любого
.
2) Если , то заключение справедливо. Пусть
и
. Тогда по лемме 3 существует s
. Предположим, что
для некоторого с
1. Возьмем в S
элемент
и положим b
=as
S
.
Поскольку s
1, то sn
+ при n
. Следовательно, sN
c
для некоторого натурального N
, и, значит, sN
S
. Повторяя рассуждения, проведенные выше, заключаем:
для любого
.
Предложение 2.
Пусть
S
– НОД-полугруппа. Если пространство
S
несвязно и
, то
S
нульмерно.
Доказательство.
Докажем, что при выполненных условиях в любом интервале , где
, есть точки, не принадлежащие S
. Доказывая от противного, предположим, что [a
,b
]
S
для некоторых
. Возможны два случая.
Случай 1. Пусть 0a
. Докажем, что найдется n
0
N
, для которого a
b
. В самом деле, допуская, что b
a
для всех n
N
и, переходя в неравенстве b
a
к пределу при n
, получили бы b
a
b
. Откуда b
a
для всех натуральных n
n
0
. Тогда
что невозможно по лемме 4.
Случай 2. Пусть . Возьмем такое число с
a
, чтобы 1c
b
. Рассуждая, как и в случае 1, получаем c
b
для некоторого n
0
N
. Тогда
что также невозможно по лемме 4.
Докажем, что S
нульмерно. Пусть V
– произвольное открытое множество в S
и . Требуется показать, что существует такое открыто-замкнутое в S
множество U
, что
. Поскольку топология в S
индуцируется топологией числовой прямой, то существуют такие числа a
иb
, что
. Если
, то это и есть открыто-замкнутое множество U
. Пусть левее s
в интервале
нет точек множества S
, а правее – есть, и точка с
- одна из них. По доказанному выше существует точка
, такая, что
. В этом случае
– искомое открыто-замкнутое множество U
. Аналогично рассматривается случай, когда левее точки s
в интервале
есть точки множества S
, а правее нет, и случай, когда интервал
содержит точки из S
и справа и слева от s
. Предложение доказано.
С помощью предложения 2 можно получить следующую топологическую классификацию числовых НОД-полугрупп.
Предложение 3. Любая НОД-полугруппа S относится к одному из следующих классов:
1. S связно.
2. S нульмерно, замкнуто в R + и 0 – предельная точка для S .
3. S нульмерно, не замкнуто в R + и 0 – предельная точка для S .
4. Точка 0 изолирована в S.
Доказательство.
По лемме 1 существуют полугруппы , которые являются связными множествами. Пусть
несвязно. Если
=, то 0 – изолированная точка. Если существует элемент
, то
для любого
N
и последовательность
сходится к 0. Следовательно, 0 – предельная точка дляS
, множество
при этом может быть как замкнутым в R
+
, так и не замкнутым. Предложение доказано.
Глава 2. Мультипликативные полугруппы неотрицательных чисел
со свойствами (*) и (**)
В этой главе на основе предложения 2 дадим топологическую классификацию полугрупп S , которые обладают одним из следующих свойств:
(*) (a
b
);
(**) (0a
b
).
Лемма 8.
Полугруппа
S
,
удовлетворяющая хотя бы одному из свойств
(*), (**) является НОД-полугруппой и НОК-полугруппой. При этом, в первом случае НОД
(a
,b
)=
max
{a
,b
}, НОК
(a
,b
)=
min
{a
,b
} для любых
a
,
bS
, а во втором случае – НОД
(a
,b
)=
min
{a
,b
}, НОК
(a
,b
)=
max
{a
,b
}, если числа
и
не равны нулю.
Доказательство.
Пусть полугруппа S
обладает свойством (*). Покажем, что любые два элемента имеют НОД и НОК. По свойству (*) a
=
и
S
. Получили, что элемент b
является делителем a
. Следовательно, по свойству 2 делимости НОД(a
,b
) = b
= max{a
,b
} и НОК(a
,b
) = а
= min{a
,b
}. Аналогичными рассуждениями можно показать, что если полугруппа S
обладает свойством (**), то для любых ненулевых элементов
и
НОД(a
,b
)= min{a
,b
}, НОК(a
,b
)= max{a
,b
}. Пусть хотя бы одно из чисел а или b равно 0, например, b. Тогда НОД(a
,b
) = НОД(а,0) = а и НОК(a
,b
) = НОК(а,0) = а.
Лемма 9. Если в полугруппе S со свойством (* ) существует элемент c 1, то S \ {0 } – группа.
Доказательство.
Докажем, что в S
произвольный ненулевой элемент a
1 обратим. Элемент acn
1 для некоторого n
N
. Тогда 1 / acn
S
в силу свойства (*). Откуда 1 / a
= (1 / acn
) cn
S
.
Предложение 4. Любая полугруппа S со свойством (* ) относится к одному из следующих классов:
1. S = [0,1].
2. S = R + .
3.
S
=
{rn
| n
= 0,1,2,…}, где
0
.
4.
S
=
{rn
| n
Z
}
, где
0
.
5. S – нульмерное плотное подпространство в [0,1].
6. S – нульмерное плотное подпространство в R + .
7. S = {0,1}.
Доказательство.
Если связно, S
=
или S
=
R
+
по лемме 1.
Пусть S несвязно. Поскольку полугруппа {0}[1,+) не обладает свойством (*), то S
нульмерно. Предположим сначала, что S
замкнуто (в R
+
). Если в S
ровно два элемента, то S
=
{0,1}. Пусть поэтому
. Покажем, что точка 1 изолирована в S
. Предположим, что это не так. Тогда в S
существует строго возрастающая последовательность (е
n
), сходящаяся к 1. Так как S
замкнуто и несвязно, то в
(0,1) найдутся такие элементы c
d
, что
(c
,d
) =
по лемме 4. В то же время строго возрастающая последовательность (en
,d
) элементов из S
сходится к числу d
. Противоречие. Следовательно, 1 является изолированной точкой в S. Обозначим
. Тогда
. Возьмем произвольный ненулевой элемент
из
. Для него
при некотором
N
. По свойству (*) получаем
и
. Поскольку
, то
. Тогда в случае S
имеем
0,1,2,…
, а в противном случае
Z
по лемме 9.
Пусть S
нульмерно и не замкнуто. Существует монотонная последовательность чисел 0а
n
S
, сходящаяся к некоторому а
S
. Пусть bn
= an
/ an
+1
, если (an
) возрастает, и bn
= an
+1
/ an
, если она убывает. Тогда bn
S
(
N
) и bn
1 при
. Возьмем произвольное число с
(0,1). Для каждого
N
найдется такое k
(n
)
N
, что
. Тогда имеем
и
.
Следовательно, числа N
из
образуют плотное подмножество в [0,1]. Если S
, то получаем случай 5. Если же S
, то по лемме 9 получаем случай 6. Предложение доказано.
Предложение 5. Любая полугруппа S со свойством (**) относится к одному из следующих классов:
1. S = R + .
2.
S
=
{rn
| n
N
}, где
.
3.
S
=
{rn
| n
Z
}
, где
.
4.
S
\{0} – нульмерное плотное подпространство в [1,).
5. S – нульмерное плотное подпространство в R + .
6. S = {0,1}.
7.
[1,+).
Доказательство.
Пусть связно. Поскольку полугруппа [0,1] не обладает свойством (**), то по лемме 1 получаем S
=
R
+
.
Очевидно, является полугруппой со свойством (**).
Пусть далее несвязно и
. Тогда
нульмерно по предложению 2.
Пусть замкнуто и
. Если в
нет элемента, большего 1, то
. Пусть
(1,+). Докажем, что точка 1 изолирована в
. Допустим, что это не так. Тогда в
существует строго убывающая
последовательность, сходящаяся к 1. Так как
замкнуто и несвязно, то в
[1,+) есть такие элементы
, что
. В то же время строго убывающая последовательность
элементов из
сходится к числу
, следовательно, ее члены, начиная с некоторого номера, попадают в интервал
. Получили противоречие. Следовательно, 1 является изолированной точкой в
. Обозначим
. Тогда
и поскольку
замкнуто, то
. Возьмем произвольный элемент
из
. Для него
при некотором
N
. По свойству (**) получаем
и
. Поскольку
, то
. В этом случае
N
.
Пусть замкнуто и
. Как и выше, доказывается, что 1 – изолированная точка. Обозначим
и
. Тогда
,
. Так как
замкнуто, то
. Из свойства (**) следует, что
. Из неравенства
по доказанному выше получаем:
для некоторого натурального N
. Поскольку
, то
. В этом случае
Z
.
Пусть не замкнуто и
. Тогда существует монотонная последовательность чисел
, сходящаяся к некоторому
. Пусть
, если последовательность элементов
убывает, и
, если она возрастает. Тогда
для всех
N
и
при
. Возьмем произвольное число
. Для каждого
N
найдется такое
N
, что
. Тогда имеем
и
.
Следовательно, числа N
из
образуют плотное подмножество в [1,+ ) (случай 4).
Если не замкнуто и
, то аналогичные рассуждения показывают, что S
–
плотное подпространство в R
+
.
Следствие 1. Любая полугруппа S , обладающая свойствами (*) и (**) относится к одному из следующих классов:
1. S = R + .
2. S – нульмерное плотное подпространство в R + .
3. S = {0,1}.
Библиографический список
1. Варанкина, В.И., Полукольца непрерывных неотрицательных функций: делимость, идеалы и конгруэнции [Текст] // В. И. Варанкина, Е. М. Вечтомов, И. А. Семенова / Фундаментальная и прикладная математика. 1998. Т. 4. № 2. С 493-510.
2. Курош, А.Г. Лекции по общей алгебре [Текст] / А. Г. Курош. – М.: Наука, 1973.