Внешняя память компьютера 3

СОДЕРЖАНИЕ: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Всероссийский Заочный Финансово-Экономический Институт Филиал в г. Барнауле Курсовая работа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Всероссийский Заочный Финансово-Экономический Институт

Филиал в г. Барнауле

Курсовая работа

по дисциплине «Информатика»

на тему

«Внешняя память компьютера»

Исполнитель:

Группа

№ зачетной книжки

Руководитель:

Барнаул 2005

Содержание

Введение 3

1. Внешняя память 5

2. жесткие диски 8

3. Дисковые массивы RAID 11

4. Компакт-диски 13

5. Практическая часть 17

Заключение 26

Список литературы 27

Введение

Под внешней памятью компьютера подразумевают обычно как носители информации (то есть устройства, где она непосредственно хранится), так и устройства для чтения/записи информации, которые чаще всего называют накопителями.

Как правило, для каждого носителя информации существует свой накопитель.

Первые носители информации для ЭВМ были бумажными (перфокарты, перфоленты). Для работы с ними существовало 2 отдельных устройства: перфоратор – для записи информации, счетчик – для считывания информации и передачи ее в оперативную память. Позднее появились магнитные носители информации (магнитные ленты, магнитные барабаны, магнитные диски), накопители которых совмещали в себе и устройство считывания, и устройство записи. А такое устройство, как винчестер, совмещает в себе и носитель, и накопитель. Для оптических носителей информации (компакт-дисков, цифровых дисков) накопители могут как совмещать функции чтения/записи, так и быть специализированными, например, только для чтения.

Накопители на жестких магнитных дисках (НЖМД или винчестеры) представляют собой внешние ЗУ, в которых носителем информации являются жесткие несменные магнитные диски, объединенные в пакет.

НЖМД предназначены для долговременного хранения информации, постоянно используемой при работе с ПК: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования, документов и программ, подготовленных пользователем и т. д.

В настоящее время ПК без НЖМД практически не выпускаются. Если компьютер включен в локальную компьютерную сеть, то он может работать без собственного жесткого диска, но тогда он использует жесткий диск центрального сервера.

Винчестер устанавливается внутри системного блока и внешне представляет собой герметичную металлическую коробку, внутри которой расположены несколько дисков, объединенных в один пакет, магнитные головки чтения/записи, механизм вращения диска и перемещения головок.

Основными характеристиками винчестера являются:

- емкость, то есть максимальный объем данных, который можно записать на носитель;

- быстродействие, определяемое временем доступа к нужной информации, временем ее считывания/записи и скоростью передачи данных;

- время безотказной работы, характеризующее надежность устройства.

Емкость НЖМД зависит от модели ПК. Первый винчестер (начало 80-х годов) имел «колоссальную емкость» 10 Мбайт. Считается, что объем современного винчестера должен быть не менее 2 – 3 Гбайт. Последние модели ПК имеют винчестеры емкостью свыше 120 Гбайт, ожидается появление винчестеров емкостью до 320 Гбайт.

Чаще всего винчестер имеет имя С:. Однако емкость винчестера обычно очень велика, поэтому для удобства работы винчестер разбивают на участки. Каждый такой участок воспринимается операционной системой как отдельный диск и называется «логическим диском». Имена таких дисков – C:, D:, Е: и т. д. по алфавиту.

ВНЕШНЯЯ ПАМЯТЬ

Устройства внешней памяти или, иначе, внешние запоминающие устройства весьма разнообразны. Их можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д.

Носитель - материальный объект, способный хранить информацию.

В зависимости от типа носителя все ВЗУ можно подразделить на накопители на магнитной ленте и дисковые накопители.

Накопители на магнитной ленте, в свою очередь, бывают двух видов: накопители на бобинной магнитной ленте (НБМЛ) и накопители на кассетной магнитной ленте (НКМ- стриммеры). В ПК используются только стриммеры.

Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может обратиться к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.[2]

Накопители на дисках более разнообразны

накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах; накопители на жестких магнитных дисках (НЖМД) типа винчестер; накопители на сменных жестких магнитных дисках, использующие эффект Бернулли; накопители на флоптических дисках, иначе, floptical-накопители; накопители сверхвысокой плотности записи, иначе, VHD-накопители; накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM); накопители на оптических дисках типа СС WORM (Continuous Composite Write Once Read Many - однократная запись - многократное чтение);накопители на магнитооптических дисках (НМОД) и др.

Тип накопления

Емкость, Мбайт

Время доступа, мс

Трансфер, Кбайт/с

Вид доступа

НГМД

1,2; 1,44

65-100

150

Чтение/запись

Винчестер

250-4000

8-20

500-3000

Чтение/запись

Бернулли

20-230

20

500-3000

Чтение/запись

Floptical

20,8

65

100-300

Чтение/запись

VHD

120-240

65

200-600

Чтение/запись

CD-ROM

250-1500

15-300

150-1500

Только чтение

CC WORM

120-1000

15-150

150-1500

Чтение/ однократная запись

НМОД

128-1300

15-150

300-1000

Чтение/запись

Примечание Время доступа - средний временной интервал, в течение которого накопитель находит требуемые данные - представляет собой сумму времени для позиционирования головок чтения/записи на нужную дорожку и ожидания нужного сектора. Трансфер - скорость передачи данных при последовательном чтении.

Магнитные диски (МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором. Наибольшее распространение получили диски с форм-факторами 3,5 (89 мм) и 5,25 (133 мм). Диски с форм-фактором 3,5 при меньших габаритах имеют большую емкость, меньшее время доступа и более высокую скорость чтения данных подряд (трансфер), более высокие надежность и долговечность.

Информация на МД записывается и считывается магнитными головками вдоль концентрическихокружностей - дорожек (треков). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.

Каждая дорожка МД разбита на сектора. В одном секторе дорожки может быть помещено 128, 256, 512 или 1024 байт, но обычно 512 байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов. Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.[3]

2. Жесткие диски

В качестве накопителей на жестких магнитных дисках (НЖМД) широкое распространение в ПК получили накопители типа винчестер.

Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30/30 известного охотничьего ружья Винчестер.

В этих накопителях один или несколько жестких дисков, изготовленных из сплавов алюминия или из керамики и покрытых ферролаком, вместе с блоком магнитных головок считывания/записи помещены в герметически закрытый корпус. Емкость этих накопителей благодаря чрезвычайно плотной записи, получаемой в таких несъемных конструкциях, достигает нескольких тысяч мегабайт; быстродействие их также значительно более высокое, нежели у НГМД.

Максимальные значения на 1995 г.:

емкость 5000 Мбайт (стандарт емкости на 1995 г.-850 Мбайт); скорость вращения 7200 об./мин; время доступа - 6 мс; трансфер - 11 Мбайт/с. НЖМД весьма разнообразны. Диаметр дисков чаще всего 3,5 (89 мм), но есть и другие, в частности 5,25 (133 мм) и 1,8 (45 мм). Наиболее распространенная высота корпуса дисковода 25 мм у настольных ПК, 41 мм - у машин-серверов, 12 мм - у портативных ПК и др.

В современных винчестерах стал использоваться метод зонной записи. В этом случае все пространство диска делится на несколько зон, причем во внешних зонах секторов размещается больше данных, чем во внутренних. Это, в частности, позволило увеличить емкость жестких дисков примерно на 30%.

Для того чтобы получить на магнитном носителе структуру диска, включающую в себя дорожки и сектора, над ним должна быть выполнена процедура, называемая физическим, или низкоуровневым, форматированием (physical, или low-level formatting). В ходе выполнения этой процедуры контроллер записывает на носитель служебную информацию, которая определяет разметку цилиндров диска на сектора и нумерует их. Форматирование низкого уровня предусматривает и маркировку дефектных секторов для исключения обращения к ним в процессе эксплуатации диска.

Максимальная емкость и скорость передачи данных существенно зависят от интерфейса, используемого накопителем.

Распространенный сейчас интерфейс AT Attachment (ATA), широкоизвестный и под именем Integrated Device Electronics (IDE), предложенный в 1988 г. пользователям ПК IBM PC/AT, ограничивает емкость одного накопителя 504 Мбайтами (эта емкость ограничена адресным пространством традиционной адресации головка - цилиндр - сектор: 16 головок * 1024 цилиндра * 63 сектора * 512 байт в секторе = 504 Кбайта = 528 482 304 байта) и обеспечивает скорость передачи данных 5-10 Мбайт/с.

Интерфейс Fast ATA-2 или Enhanced IDE (EIDE), использующий как традиционную (но расширенную) адресацию по номерам головки, цилиндра и сектора, так и адресацию логических блоков (Logic Block Address LBA), поддерживает емкость диска до 2500 Мбайт и скорость обмена до 16 Мбайт/с. С помощью EIDE к материнской плате может подключаться до четырех накопителей, в том числе и CD-ROM, и НКМЛ. Для старых версий BIOS для поддержки EIDE нужен специальный драйвер.

Наряду с ATA и ATA-2 широко используются и две версии более сложных дисковых интерфейсов Small Computer System Interface (интерфейс малых компьютерных систем): SCSI и SCSI-2. Их достоинства: высокая скорость передачи данных (интерфейс Fast Wide SCSI-2 и ожидаемый в ближайшее время интерфейс SCSI-3 поддерживают скорость до 40 Мбайт/с), большое количество (до 7 шт.) и максимальная емкость подключаемых накопителей. Их недостатки: высокая стоимость (примерно в 5 -10 раз дороже ATA), сложность установки и настройки. Интерфейсы SCSI-2 и SCSI-3 рассчитаны на использование в мощных машинах-серверах и рабочих станциях.

Для повышения скорости обмена данными процессора с дисками НЖМД следует кэшировать. КЭШ-память для дисков имеет то же функциональное назначение, что и КЭШ для основной памяти, т.е. служит быстродействующим буфером памяти для кратковременного хранения информации, считываемой или записываемой на диск. КЭШ-память может быть встроенной в дисковод, а может создаваться программным путем (например, драйвером Microsoft Smartdrive) в оперативной памяти. Скорость обмена данными процессора с КЭШ-памятью диска может достигать 100 Мбайт/с.

В ПК имеется обычно один, реже несколько накопителей на жестких магнитных дисках. Однако в MS DOS (MicroSoft Disk Operation System - дисковая операционная система фирмы Microsoft) программными средствами один физический диск может быть разделен на несколько логических дисков; тем самым имитируется несколько НМД на одном накопителе.[5]

3. Дисковые массивы RAID

В машинах-серверах баз данных и в суперЭВМ часто применяются дисковые массивы RAID (Redundant Array of Independent Disks - матрица с резервируемыми независимыми дисками), в которых несколько накопителей на жестких дисках объединены в один большой логический диск, при этом используются основанные на введении информационной избыточности методы обеспечения достоверности информации, существенно повышающие надежность работы системы (при обнаружении искаженной информации она автоматически корректируется, а неисправный накопитель в режиме Plug and Play (вставляй и работай) замещается исправным).[1]

Существует несколько уровней базовой компоновки массивов RAID:

1-й уровень включает два диска, второй из которых является точной копией первого;

2-й уровень использует несколько дисков специально для хранения контрольных сумм и обеспечивает самый сложный функционально и самый эффективный метод исправления ошибок;

3-й уровень включает четыре диска: три информационных, а четвертый хранит контрольные суммы, обеспечивающие исправление ошибок в первых трех;

4-й и 5-й уровни используют диски, на каждом из которых хранятся свои собственные контрольные суммы.

Дисковые массивы второго поколения - RAID6 и RAID7. Последние могут объединять до 48 физических дисков любой емкости, формирующих до 120 логических дисков; имеют внутреннюю КЭШ-память до 256 Мбайт и разъемы для подключения внешних интерфейсов типа SCSI. Внутренняя шина X-bus имеет пропускную способность 80 Мбайт/с (для сравнения: трансфер SCSI-3 до 40 Мбайт/с, а скорость считывания с физического диска до 5 Мбайт/с).

Среднее время наработки на отказ в дисковых массивах RAID - сотни тысяч часов, а при 2-м уровне компоновки - до миллиона часов. В обычных НМД эта величина не превышает тысячи часов. Информационная емкость дисковых массивов RAID - от 3 до 700 Гбайт (максимальная достигнутая в 1995 г. емкость дисковых накопителей 5,5 Тбайта=5500 Гбайт).

Применяются и НЖМД со сменными пакетам и дисков (накопители Бернулли), использующие пакеты из дисков диаметром 133 мм, они имеют емкость от 20 до 230 Мбайт и меньшее быстродействие, но более дорогие, чем винчестеры. Основное их достоинство: возможность накопления и хранения пакетов вне ПК.

Основные направления улучшения характеристик НМД:

использование высокоэффективных дисковых интерфейсов (E1DE, SCSI); использование более совершенных магнитных головок, позволяющих увеличить плотность записи и, следовательно, емкость диска и трансфер (без увеличения скорости вращения диска).

4. Компакт-диски .

Общии сведения о компакт-дисках

В 1982 году фирмы Sony и Philips завершили работу над форматом CD-аудио (Compact Disk), открыв тем самым эру цифровых носителей на компакт-дисках. Принцип работы этих дисков – оптический. Чтение и запись осуществляется лазером. В компакт-диске данные кодируются и записываются в виде последовательности отражающих и не отражающих участков. Отражение интерпретируется как единица, «впадина» - как ноль.

Приведу некоторые технические параметры компакт-дисков. Рабочая длина волны лазера - 780 нм. Диаметр компакт-диска 120 мм. Толщина диска 1,2 мм. Объем диска 700 Мб (74 мин аудио). Вес 14-33 г. Цепочка углублений (pits) расположена по спирали как в грампластинке, но в направлении от центра (фактически CD является устройством последовательного доступа с ускоренной перемоткой). Интервал между витками - 1.6 мкм, ширина пита - 0.5 мкм, глубина - 0.125 мкм (1/4 длины волны луча лазера в поликарбонате), минимальная длина - 0.83 мкм (рис. 1).

Рис. 1. Поверхность компакт-диска.

Существуют модификации в 80 минут (700 МБ), 90 минут (791 МБ) и 99 минут (870 MB). Номинальная (1x) скорость передачи данных - 150 КБ/сек (176400 байт/сек аудио или сырых данных, 4.3 Мбит/сек физических данных). В то время как все магнитные диски вращаются с постоянным числом оборотов в минуту, то есть с неизменной угловой скоростью (CAV, Constant Angular Velocity), компакт-диск вращается обычно с переменной угловой скоростью, чтобы обеспечить постоянную линейную скорость при чтении (CLV, Constant Linear Velocity). Таким образом, чтение внутренних сторон осуществляется с увеличенным, а наружных - с уменьшенным числом оборотов. Именно этим обуславливается достаточно низкая скорость доступа к данным для компакт-дисков по сравнению, например, с винчестерами.[2]

Классификация компакт-дисков

Существует множество стандартов и форматов компакт-дисков – в зависимости от назначения и производителей. Приведу для примера далеко не все существующие: Audio CD (CD-DA), CD-ROM (ISO 9660, mode 1 mode 2), Mixed-mode CD, CD-ROM XA (CD-ROM eXtended Architecture, mode 2, form 1 form 2), Video CD, CD-I (CD-Interactive), СD-I-Ready, CD-Bridge, Photo CD (single multi-session), Karaoke CD, CD-G, CD-Extra, I-Trax, Enhanced CD (CD Plus), Multi-session CD, CD-Text, CD-WO (Write-Once). Полное описание их займет слишком много места, и это не является целью написания данной работы.

В зависимости же от количества возможных операций записи компакт-диски разделяются на: CD-ROM (read only memory), CD-R (recordable), они же CD-WORM (write once read many), CD-RW (rewritable). Соответственно, СD-ROM изготавливается на заводе, и дальнейшая запись на него невозможна; CD-R предназначен для однократной записи в домашних условиях; CD-RW допускает множество операций записи. Диски CD-ROM представляют собой поликарбонат, покрытый с одной стороны отражающим слоем (алюминий или - для ответственных применений - золото) и защитным лаком с другой. Смена отражающей способности осуществляется за счет штамповки углублений в металлическом слое. На заводе их просто штампуют с матрицы.

Формат компакт-дисков

Поверхность диска разделена на области:

· PCA (Power Calibration Area). Используется для настройки мощности лазера записывающим устройством. 100 элементов.

· PMA (Program Memory Area). Сюда временно записываются координаты начала и конца каждого трека при извлечении диска из записывающего устройства без закрытия сессии. 100 элементов.

· Вводная область (Lead-in Area) - кольцо шириной 4 мм (диаметр 46-50 мм) ближе к центру диска (до 4500 секторов, 1 минута, 9 MB). Состоит из 1 дорожки (Lead-in Track). Содержит TOC (абсолютные временные адреса дорожек и начала выводной области, точность - 1 секунда).

· Область данных (program area, user data area).

· Выводная область (Lead-out) - кольцо 116-117 мм (6750 секторов, 1.5 минуты, 13.5 MB). Состоит из 1 дорожки (Lead-out Track).

Каждый байт данных (8 бит) кодируется 14-битным символом на носителе (кодировка EFM). Символы отделяются 3-битными промежутками, выбираемыми так, чтобы на носителе не было более 10 нулей подряд.

Из 24 байтов данных (192 бита) формируется кадр (F1-frame), 588 битов носителя, не считая промежутков:

· синхронизация (24 бита носителя)

· символ субкода (биты субканалов P, Q, R, S, T, U, V, W)

· 12 символов данных

· 4 символа контрольного кода

· 12 символов данных

· 4 символа контрольного кода

При декодировании могут использоваться различные стратегии обнаружения и исправления групповых ошибок (вероятность обнаружения против надежности коррекции).

Последовательность из 98 кадров образует сектор (2352 информационных байта). Кадры в секторе перемешаны, чтобы уменьшить влияние дефектов носителя. Адресация сектора произошла от аудиодисков и записывается в формате A-Time - mm:ss:ff (минуты:секунды:доли, доля в секунде от 0 до 74). Отсчет начинается с начала программной области, т.е. адреса секторов вводной области отрицательные. Биты субканалов собираются в 98-битные слова для каждого субканала (из них 2 бита - синхронизация). Используются субканалы:

· P - маркировка окончания дорожки (min 150 секторов) и начала следующей (min 150 секторов).

· Q - дополнительная информация о содержимом дорожки:

o число каналов

o данные или звук

o можно ли копировать

o признак частотных предыскажений (pre-emphasis): искусственный подъем высоких частот на 20 дБ

o режим использования подканала

- q-Mode 1: во вводной области здесь хранится TOC, в программной области - номера дорожки, адреса, индексы и паузы

- q-Mode 2: каталоговый номер диска (тот же, что на штрих-коде) - 13 цифр в формате BCD (MCN, ENA/UPC EAN)

- q-Mode 3: ISRC (International Standard Recording Code) - код страны, владельца, год и серийный номер записи

o CRC-16

Последовательность секторов одного формата объединяется в дорожку (трек) от 300 секторов (4 секунды, см. субканал P) до всего диска. На диске может быть до 99 дорожек (номера от 1 до 99). Трек может содержать служебные области:

· пауза - только информация субканалов, нет пользовательских данных

· pre-gap - начало трека, не содержит пользовательских данных и состоит из двух интервалов: первый длиной не менее 1 секунды (75 секторов) позволяет отстроиться от предыдущего трека, второй длиной не менее 2 секунд задает формат секторов трека

· post-gap - конец трека, не содержит пользовательских данных, длиной не менее 2 секунд

Вводная цифровая область должна завершаться постзазором. Первый цифровой трек должен начинаться со второй части предзазора. Последний цифровой трек должен завершаться постзазором. Выводная цифровая область не содержит предзазора.[5]

Практическая часть

Вариант 14

Используя ППП на ПК, необходимо определить расходы на содержание одного учащегося в группе продленного дня в городской школе в год по имеющимся данным.

Показатель

Принято в текущем году

Проект на следующий год

Средняя сумма расходов на одного учащегося в год:

заработная плата в год, руб

100,00

200,00

начисления на заработную плату, %

38,50

38,50

расходы на мягкий инвентарь, руб

200,00

200,00

Расходы на питание:

норма расходов на питание в день, руб.

10,00

12,00

число дней функционирования групп

210,00

210,00

Вычислите:

· Сумму расходов на питание учащегося в текущем и проектируемом году;

· Сумму расходов на содержание учащегося в текущем и проектируемом году;

· Абсолютное и относительное изменение исчисленных показателей проектируемого года к показателям текущего в виде таблицы.

Введите текущее значение даты между таблицей и ее названием.

По данным таблицы постройте гистограмму с заголовком, названием осей координат и легендой.

1. Выбор ППП.

В данной задаче наиболее целесообразно применить и использовать табличный процессор MS Excel. Так как в нем можно наиболее полно отразить алгоритм работы, проектирование и графическое представление форм данных по нашей задаче.

2.Описание алгоритма решения задачи.

ТС - общая сумма затрат на содержание одного учащегося, Z – заработная плата, D – начисления на заработную плате, C – затраты на мягкий инвентарь, N – норма на питание в день, K – количество дней функционирования групп.

Сумма расходов на питание N*K

Сумма расходов на содержание учащегося Z+(Z*D/100)+C

Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего: ABSпроект – ABSтекущ

Заработная плата в год

Относительное изменение исчисленных показателей проектируемого года к показателям текущего: (ABSпроект – ABSтекущ )*100/(N*K)тек

Рисунок 1 Неформализованное описание решения задачи


Проектирование форм выходных документов и графическое представление данных по выбранной задаче.

3 Структура шаблонов таблиц

Таблица.1 «Расходы на содержание одного учащегося»

Колонка электронной таблицы

Наименование (реквизиты)

Тип данных

Формат данных

длина

Точность

B

Показатель

текстовый

67

C

Принято в текущем году

Числовой

14

2

D

Принято в текущем году

Числовой

20

2

Таблица 2 Расходы на содержание одного учащегося в группе продленного дня в городской школе в год

Колонка электронной таблицы

Наименование (реквизиты)

Тип данных

Формат данных

длина

Точность

B

Показатель

текстовый

67

C

Принято в текущем году

Числовой

14

2

D

Принято в текущем году

Числовой

20

2

E

Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего (руб)

Числовой

19

2

F

Относительное изменение исчисленных показателей проектируемого года к показателям текущего (%)

Числовой

19

2

4 Расположение таблиц на рабочих листах MS Excel.

Таблица 3 Расходы на содержание одного учащегося

Таблица 4. Итоговая таблица расходы на содержание учащегося в группе продленного дня в городской школе.

5 Шаблоны таблиц с исходными данными

Таблица 6 Расходы на содержание одного учащегося

Показатель

Принято в текущем году

Проект на следующий год

Средняя сумма расходов на одного учащегося в год:

заработная плата в год, руб

C10

D10

начисления на заработную плату, %

C11

D11

расходы на мягкий инвентарь, руб

C12

D12

Расходы на питание:

норма расходов на питание в день, руб.

C14

D14

число дней функционирования групп

C15

D15

Таблица 6 Расходы на содержание одного учащегося в группе продленного дня в городской школе в год.

Показатель

в текущем году

проектируемом году

Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего (руб)

Относительное изменение исчисленных показателей проектируемого года к показателям текущего (%)

Сумма расходов на питание учащегося, руб

C14*C15

D14*D15

D24-C24

E24*100/C24

Сумма расходов на содержание учащегося, руб

C10+(C11*C10/100)+C12

D10+(D11*D10/100)+D12

D25-C25

E25*100/C25

Итого (руб):

СУММ(C24:C25)

СУММ(D24:D25)

СУММ(E24:E25)

СУММ(F24:F25)

6 Инструкция пользователя.

Последовательность действий пользователя при решении задачи:

Для запуска программы MS Excel из главного меню Windows нажимаем кнопку Пуск и выбираем MS Excel в меню Программы.

Вводим исходные данные в электронную таблицу формы кассового ордера

1. После того как ввели исходные данные, выделяем необходимые ячейки, выбираем формат ячейки и отмечаем необходимый тип данных (числовой, Дата, текстовый, денежный), в денежном формате выбираем число десятичных знаков

2. Выделяем всю таблицу и копируем ее на новый лист.

3. На новом листе выделяем всю таблицу выбираем в панели инструментов Данные Фильтр Автофильтр . С помощью автофильтра мы можем отфильтровать данные по получателям и по видам оплат.

4. По полю сумма подводим итог и что бы итог отображался при фильтровании данных используем Вставка функции математические ПРОМЕЖУТОЧНЫЕ.ИТОГИ далее выбираем область данных суммы.

5. Далее строим гистограмму.

7 Технология построения диаграмм

· Нажимаем кнопку Мастер диаграмм на панели инструментов Стандартная.

· Осуществляем построение нужной диаграммы:

Шаг 1. Выбираем Тип ( Гистограмма ) и Вид ( Обычная ) диаграммы, нажимаем кнопку Далее.

Шаг 2. Нажимаем закладку Ряд, в окне Ряд удаляем если есть лишние Ряды , Нажимаем добавить ряд, далее выделяем нужный диапазон в нашем случае(предельные издержки и предельная выручка) в окне подписи по оси Х нажимаем флажок:

В окне Источник данных диаграмм указываем диапазон

наименование товара путем выделения соответствующей зоны в

таблице, нажимаем флажок, нажимаем кнопку Далее.

Шаг 3. Выбираем необходимые заголовки и нажимаем кнопку

Далее.

Шаг 4. Выполняем указания Мастера диаграмм и нажимаем

кнопку Готово.

• Устанавливаем курсор в свободное место диаграммы, щелкаем

кнопкой мыши и удерживая кнопку перетаскиваем диаграмму на

необходимое поле Листа.

Щелкаем кнопкой мыши в любой из точек на рамке Области диаграммы и растягиваем рамку диаграммы до нужного размера.



Заключение

В данной курсовой мы рассмотрели тему «Внешняя память компьютера». А также выполнили практическую часть использовав табличный процессор MS Excel. Так как в нем можно наиболее полно отразить алгоритм работы, проектирование и графическое представление форм данных по нашей задаче.

В теоретической части рассмотрели виды внешней памяти:

· Магнитные диски (МД)

· Жесткие диски

· Дисковые массивы RAID

· Компакт-диски

А так же дали определение внешней памяти компьютера. Под ней подразумевают обычно как носители информации (то есть устройства, где она непосредственно хранится), так и устройства для чтения/записи информации, которые чаще всего называют накопителями.

Список литературы

1. Гейн А.Г., Сенокосов А.И., Шолохович В.Ф. Информатика: 7-9 кл. Учеб. для общеобразоват. учеб. заведений — М.: Дрофа, 2002.

2. Каймин В.А., Щеголев А.Г., Ерохина Е.А., Федюшин Д.П. Основы информатики и вычислительной техники: Проб. учеб. для 10-11 классов средн. школы. — М.: Просвещение, 2001.

3. Кушниренко А.Г., Лебедев Г.В., Сворень Р.А. Основы информатики и вычислительной техники: Учеб. для средн. учеб. заведений. — М.: Просвещение, 2003.

4. Семакин И., Залогова Л., Русаков С., Шестакова Л. Информатика: уч. по базовому курсу. — М.: Лаборатория Базовых Знаний, 1999.

5. Угринович Н. Информатика и информационные технологии. Учебное пособие для общеобразовательных учреждений. — М.: БИНОМ, 2003. — 464 с. (§ 2.14. Хранение информации, с. 91-98).

Скачать архив с текстом документа