Образцы исследования элементарных функций, содержащих обратные тригонометрические функции
СОДЕРЖАНИЕ: Примеры исследования элементарных функций. Тригонометрические операции над аркфункциями. Формулы сложения.Примеры
Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции.
Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики.
Решение: Рассмотрим 1-ю функцию
|
|
|
|
| x | 1 ,
( - ; -1 ] U [ 1; + )
|
|||
|
Функция нечетная
( f(x) убывает на пр. [0;1] , f(y) убывает на пр. [0;/2] )
|
Д(f): ( - ; -1 ] U [ 1; + )
Пример №2. Исследовать функцию y=arccos(x2 ).
|
Д(f): [-1;1]
Четная
f(x) убывает на пр. [0;1]
|
|
|
|
Пример №3. Исследовать функцию y=arccos2 (x).
Решение: Пусть z = arccos(x), тогда y = z2
f(z) убывает на пр. [-1;1] от до 0.
f(y) убывает на пр. [-1;1] от 2 до 0.
Пример №4. Исследовать функцию y=arctg(1/(x2 -1))
Решение:
Д(f): ( - ; -1 ) U ( -1; 1 ) U ( 1; + )
Т.к. функция четная, то достаточно исследовать функцию на двух промежутках:
|
|
0 | x | 1 | x | + | ||||
|
-1 | + - |
0 | ||||||
|
- /4 | /2 - /2 |
0 |
|
|
Тригонометрические операции над аркфункциями
Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.
В силу определения аркфункций:
sin(arcsin(x)) = x , cos(arccos(x)) = x
(справедливо только для x є [-1;1] )
tg(arctg(x)) = x , ctg(arcctg(x)) = x
(справедливо при любых x )
Графическое различие между функциями, заданными формулами:
y=x и y=sin(arcsin(x))
Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями.
Аргумент функция |
arcsin(x) | arccos(x) | arctg(x) | arcctg(x) |
sin | sin(arcsin(x))=x | |||
cos | x | |||
tg | x | 1 / x | ||
ctg | 1 / x | x |
Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже:
1. Т.к. cos2 x + sin2 x = 1 и = arcsin(x)
Перед радикалом следует взять знак “+”, т.к. дуга принадлежит правой полуокружности (замкнутой) , на которой косинус неотрицательный.
Значит, имеем
2. Из тождества следует:
3. Имеем
4.
Ниже приведены образцы выполнения различных преобразований посредством выведения формул.
Пример №1. Преобразовать выражение
Решение: Применяем формулу , имеем:
Пример №2. Подобным же образом устанавливается справедливость тождеств:
Пример №3. Пользуясь
Пример №4. Аналогично можно доказать следующие тождества:
Пример №5. Положив в формулах
, и
, получим:
,
Пример №6. Преобразуем
Положив в формуле ,
Получим:
Перед радикалами взят знак “+”, т.к. дуга принадлежит I четверти, а потому левая часть неотрицательная.
Соотношения между аркфункциями
Соотношения первого рода – соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг.
Теорема. При всех допустимых х имеют место тождества:
|
|
|
|
|
|
Соотношения второго рода – соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов).
Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности.
Пусть, например, рассматривается дуга , заключенная в интервале (-/2; /2).
Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга имеет синус, равный sin и заключена, так же как и , в интервале (-/2; /2), следовательно
Аналогично можно дугу представить в виде арктангенса:
А если бы дуга была заключена в интервале ( 0 ; ), то она могла бы быть представлена как в виде арккосинуса, так и в виде арккотангенса:
Так, например:
Аналогично:
Формулы преобразования одних аркфункций в другие, значения которых содержаться в одной и той же полуокружности (правой или верхней).
1. Выражение через арктангенс.
Пусть , тогда
Дуга , по определению арктангенса, имеет тангенс, равный и расположена в интервале (-/2; /2).
Дуга имеет тот же тангенс и расположена в том же интервале (-/2; /2).
Следовательно,
(1)
(в интервале ( -1 : 1 )
2. Выражение через арксинус.
Т.к. , то (2)
в интервале
3. Выражение арккосинуса через арккотангенс. Из равенства следует тождество
(3)
Случай №2. Рассмотрим две аркфункции, значения которых выбираются в различных промежутках (например, арксинус и арккосинус; арккосинус и арктангенс и т.п.). Если аргумент какой-либо аркфункции (т.е. значение тригонометрической функции) положителен, то соответственно аркфункция (дуга), заключенная в первой четверти, может быть представлена при помощи любой аркфункции; так, например,
Поэтому каждая из аркфункций от положительного аргумента может быть выражена посредством любой другой аркфункции.
Значение какой-либо аркфункции от отрицательного аргумента принадлежит либо промежутку от -/2 до 0, либо промежутку от /2 до и не может быть представлено в виде аркфункции, значение которой принадлежит другому (из этих двух) промежутку.
Так, например, дуга не может быть значением арксинуса. В этом случае
Формулы преобразования одних аркфункций в другие, значения которых выбираются в различных полуокружностях.
4. Выражение арксинуса через арккосинус.
Пусть , если , то . Дуга имеет косинус, равный , а поэтому
При это равенство выполняться не может. В самом деле, в этом случае
, а для функции имеем:
так как аргумент арккосинуса есть арифметический корень , т.е. число неотрицательное.
Расположение рассматриваемых дуг пояснено на рисунке:
Х0 X0
При отрицательных значениях Х имеем Х0, а при положительных X0, и
Таким образом, имеем окончательно:
если , (4)
, если
График функции
|
|
Область определения есть сегмент [-1;1]; согласно равенству (4), закон соответствия можно выразить следующим образом:
, если
, если
5. Аналогичноустановим, что при имеем:
, если же , то
Таким образом:
, если (5)
, если
6. Выражение арктангенса через арккосинус. Из соотношения
при имеем:
Если же х0, то
Итак,
, если (6)
, если
7. Выражение арккосинуса через арктангенс. Если , то
При имеем:
Итак,
, если (7)
, если
8. Выражение арктангенса через арккотангенс.
, если х0(8)
,если x0
При x0 равенство (8) легко установить; если же x0, то
.
9. Выражение арксинуса через арккотангенс.
, если (9)
, если
10. Выражение арккотангенса через арксинус.
, если 0x(10)
, если х0
11. Выражение арккотангенса через арктангенс.
, если x0 (11)
, если x0
Примеры:
Пример №1. Исследовать функцию
Решение. Эта функция определена для всех значений х, за исключением значения х=0 (при х=0) второе слагаемое теряет смысл). Воспользовавшись формулой (8) получим:
|
y= 0 , если x0
- , если x0
На чертеже изображен график
данной функции
Пример №2. Исследовать функцию
Решение: Первое слагаемое определено для значений , второе – для тех же значений аргумента. Преобразим первое слагаемое по формуле (4).
Т.к. , то получаем
,
откуда:
на сегменте [0;1]
Пример №3. Исследовать функцию
Решение: Выражения, стоящие под знаками аркфункций не превосходят по абсолютной величине единицы, поэтому данная функция определена для всех значений х. Преобразуем первое слагаемое по формуле (4).
Приняв во внимание равенство
, если
, если
получим:
y = 0 , если
, если
Выполнение обратных тригонометрических операций над тригонометрическими функциями.
При преобразовании выражений вида
следует принимать во внимание в какой четверти находится аргумент х и в каком промежутке находится значение данной аркфункции. Рассмотрим, например, первое из данных выражений:
Согласно определению арксинуса, y – есть дуга правой полуокружности (замкнутая), синус которой равен sin x ;
и
Областью определения функции служит интервал , так как при всех действительных значениях х значение промежуточного аргумента содержится на сегменте . При произвольном действительном х значение y (в общем случае) отлично от значения х.
Так, например, при х=/6 имеем:
но при х=5/6
В силу периодичности синуса функция arcsin x также является периодической с периодом 2, поэтому достаточно исследовать ее на сегменте [-/2; 3/2] величиной 2.
Если значение х принадлежит сегменту [-/2; /2] то y=x, на этом сегменте график функции совпадает с биссектрисой координатного угла.
Если значение х принадлежит сегменту [/2; 3/2], то в этом случае дуга -х принадлежит сегменту [-/2; /2]; и, так как
, то имеем y=-х;
в этом промежутке график функции совпадает с прямой линией y=-х. Если значение х принадлежит сегменту [3/2; 5/2], то, пользуясь периодичностью или путем непосредственной проверки, получим:
y=х-2
Если значение х принадлежит сегменту [-3/2; -/2], то
y=--х
Если значение х принадлежит сегменту [-5/2; -3/2], то
y=х+2
Вообще, если , то
y=х-2k
и если , то
y=(-х)+2k
График функции представлен на рисунке. Это ломаная линия с бесконечным множеством прямолинейных звеньев.
Рассмотрим функцию
Согласно определению арккосинуса, имеем:
cos y = cos x , где
Областью определения данной функции является множество всех действительных чисел; функция периодическая, с периодом, равным 2. Если значение Х принадлежит сегменту [0; ], то y = x. Если х принадлежит сегменту [; 2], то дуга 2-х принадлежит сегменту [0; ] и , поэтому:
Следовательно, на сегменте [; 2] имеем y = 2 - x
Если х принадлежит сегменту [2; 3], то y = x - 2
Если х принадлежит сегменту [3;4], то y = 4 – x
Вообще, если , то y = x - 2k
Если же , то y = -x + k
Графиком функции является ломаная линия
Формулы сложения
Формулы сложения дают выражения для суммы или разности двух (или нескольких) аркфункций через какую-либо данную аркфункцию. Пусть дана сумма аркфункций; над этой суммой можно выполнить любую тригонометрическую операцию. (....) В соответствии с этим дуга-функция может быть выражена посредством любой данной аркфункции. Однако в различных случаях (при одних и тех же аркфункциях) могут получаться различные формулы, в зависимости от промежутка, в котором берется значение рассматриваемой аркфункции.
Сказанное пояснено ниже на числовых примерах.
Примеры.
Пример №1. Преобразовать в арксинус сумму
Решение: эта сумма является суммой двух дуг и , где
;
В данном случае (т.к. , а следовательно, ), а также , поэтому .
Вычислив синус дуги , получим:
Т.к. сумма заключена на сегменте [-/2; /2], то
Пример №2. Представить дугу , рассмотренную в предыдущем примере, в виде арктангенса. Имеем:
Откуда
Пример №3. Представить посредством арктангенса сумму
Решение: в данном случае (в отличие от предыдущего) дуга оканчивается во второй четверти, т.к. , а . Вычисляем
В рассматриваемом примере , так как дуги и заключены в различных интервалах,
, а
В данном случае
Пример №4. Представить дугу , рассмотренную в предыдущем примере, в виде арккосинуса.
Решение: имеем
Обе дуги и расположены в верхней полуокружности и имеют одинаковый косинус, следовательно, эти дуги равны:
Так как суммы и разности любых аркфункций можно выражать при помощи произвольных аркфункций, то можно получать самые разнообразные формулы сложения. Однако все эти формулы выводятся при помощи однотипных рассуждений. Ниже в качестве примеров даются некоторые из формул сложения, по этим образцам можно получить аналогичные формулы в различных прочих случаях.
Формулы сложения аркфункций от положительных аргументов.
Пусть и – две дуги, заключенные в промежутке от 0 до /2 (первая четверть):
, и
Сумма + заключена в верхней полуокружности , следовательно, ее можно представить в виде аркфункции, значение которой выбирается в том же интервале, т.е. в виде арккосинуса, а также в виде арккотангенса:
;
Разность – заключена в правой полуокружности:
Следовательно, она может быть представлена в виде арксинуса, а также в виде арктангенса:
;
Так как значение всякой аркфункции от положительного аргумента заключено в интервале (0; /2) то сумму двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арккотангенса, а разность двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арктангенса.
Ниже приведены образцы соответствующих преобразований.
1. Преобразуем в арккосинус , где и
Имеем:
Откуда
2. Аналогично
, где 0 x 1, 0 y 1
, где 0 x 1, 0 y 1
Формулы сложения аркфункций от произвольных аргументов.
1. Выразить сумму через арксинус
По определению арксинуса
и ,
откуда
Для дуги возможны следующие три случая:
Случай 1:
Если числа x и y разных знаков или хотя бы одно из них равно нулю, то имеет место случай 1.
В самом деле, при и , имеем:
, и ,
откуда
При x 0, y 0 для дуги имеет место одна из следующих двух систем неравенств:
а) б)
Необходимым и достаточным признаком, позволяющим отличить один от другого случаи а) и б), является выполнение неравенства:
в случае а) и в случае б)
В самом деле, взаимно исключающие друг друга соотношения а) и б) влекут за собой взаимно исключающие следствия и (соответственно), а потому эти следствия служат необходимыми и достаточными признаками наличия данных соотношений.
Вычислив , получим:
При x 0, y 0 наличие случая 1 означает выполнения неравенства а) т.е. или
Откуда
и, следовательно,
Наличие случая 1 при x 0, y 0 означает выполнение неравенств
;
но тогда для положительных аргументов –x и –y имеет место случай 1, а потому
или
Случай 2.
В этом случае x 0, y 0, т.е. выполняется неравенство б); из условия получим
Случай 3.
Этот случай имеет место при x 0, y 0, и
Изменив знаки на противоположные придем к предыдущему случаю:
откуда
Дуги и имеют одинаковый синус, но (по определению арксинуса) , следовательно в случае 1 ;
в случае 2 и в случае 3 .
Итак, имеем окончательно:
, или
; x 0, y 0, и (1)
; x 0, y 0, и
Пример:
;
2. Заменив в (1) x на –x получим:
, или
; x 0, y 0, и (2)
; x 0, y 0, и
3. Выразить сумму через арккосинус
и
имеем
Возможны следующие два случая.
Случай 1: если , то
Приняв во внимание, что обе дуги и расположены в промежутке [0;] и что в этом промежутке косинус убывает, получим
и следовательно, , откуда
Случай 2: . Если , то
,
откуда при помощи рассуждений, аналогичных предыдущим, получим . Из сопоставления результатов следует, что случай 1 имеет место, если , а случай 2, если
.
Из равенства следует, что дуги
и имеют одинаковый косинус.
В случае 1 , в случае 2 , следовательно,
,
, (3)
4. Аналогично
,
, (4)
пример:
5.
; xy 1
; x 1, xy 1 (5)
; x 0, xy 1
При xy =1не имеет смысла
6.
; xy -1
; x 0, xy -1 (6)
; x 0, xy -1
7.
;
; (7)
;
8.
; (8)
;
9.
;
; x 1(9)
; x -1
10. (10)
(11)
, если (12)
, если