Прогноз годовой прибыли

СОДЕРЖАНИЕ: Рассчитать прогнозное значение результативной переменной. Использование табличного процессора EXCEL. Матрица парных коэффициентов корреляции. Средний коэффициент эластичности для фиктивных переменных. Стандартная ошибка прогноза значения годовой прибыли.

ВАРИАНТ 5

Изучается зависимость средней ожидаемой продолжительности жизни от нескольких факторов по данным за 1995 г., представленным в табл. 5.

Таблица 5

Страна Y X 1 X 2 X 3 X 4
Мозамбик 47 3,0 2,6 2,4 113
Бурунди 49 2,3 2,6 2,7 98
……………………………………………………………………………………..
Швейцария 78 95,9 1,0 0,8 6

Принятые в таблице обозначения:

· Y — средняя ожидаемая продолжительность жизни при рождении, лет;

· X 1 — ВВП в паритетах покупательной способности;

· X 2 — цепныетемпы прироста населения, %;

· X 3 — цепныетемпы прироста рабочей силы, %;

· Х 4 — коэффициент младенческой смертности, %.

Требуется:

1. Составить матрицу парных коэффициентов корреляции между всеми исследуемыми переменными и выявить коллинеарные факторы.

2. Построить уравнение регрессии, не содержащее коллинеарных факторов. Проверить статистическую значимость уравнения и его коэффициентов.

3. Построить уравнение регрессии, содержащее только статистически значимые и информативные факторы. Проверить статистическую значимость уравнения и его коэффициентов.

Пункты 4 — 6 относятся к уравнению регрессии, построенному при выполнении пункта 3.

4. Оценить качество и точность уравнения регрессии.

5. Дать экономическую интерпретацию коэффициентов уравнения регрессии и сравнительную оценку силы влияния факторов на результативную переменную Y .

6. Рассчитать прогнозное значение результативной переменной Y , если прогнозные значения факторов составят 75 % от своих максимальных значений. Построить доверительный интервал прогноза фактического значения Y c надежностью 80 %.

Решение. Для решения задачи используется табличный процессор EXCEL.

1.С помощью надстройки «Анализ данныхКорреляция » строим матрицу парных коэффициентов корреляции между всеми исследуемыми переменными (меню «Сервис » ® «Анализ данных …» ® «Корреляция »). На рис. 1 изображена панель корреляционного анализа с заполненными полями[1] . Результаты корреляционного анализа приведены в прил. 2 и перенесены в табл. 1 .

р ис. 1. Панель корреляционного анализа


Таблица 1

Матрица парных коэффициентов корреляции

Y X1 X2 X3 X4
Y 1
X1 0,780235 1
X2 -0,72516 -0,62251 1
X3 -0,53397 -0,65771 0,874008 1
X4 -0,96876 -0,74333 0,736073 0,55373 1

Анализ межфакторных коэффициентов корреляции показывает, что значение 0,8 превышает по абсолютной величине коэффициент корреляции между парой факторов Х 2Х 3 (выделен жирным шрифтом). Факторы Х 2Х 3 таким образом, признаются коллинеарными.

2. Как было показано в пункте 1, факторы Х 2Х 3 являются коллинеарными, а это означает, что они фактически дублируют друг друга, и их одновременное включение в модель приведет к неправильной интерпретации соответствующих коэффициентов регрессии. Видно, что фактор Х 2 имеет больший по модулю коэффициент корреляции с результатом Y , чем фактор Х 3 : ry , x 2 =0,72516; ry , x 3 =0,53397; |ry , x 2 ||ry , x 3 | (см. табл. 1 ). Это свидетельствует о более сильном влиянии фактора Х 2 на изменение Y . Фактор Х 3 , таким образом, исключается из рассмотрения.

Для построения уравнения регрессии значения используемых переменных (Y ,X 1 , X 2 , X 4 ) скопируем на чистый рабочий лист (прил. 3) . Уравнение регрессии строим с помощью надстройки «Анализ данных… Регрессия » (меню «Сервис» ® «Анализ данных… » ® «Регрессия »). Панель регрессионного анализа с заполненными полями изображена на рис. 2 .

Результаты регрессионного анализа приведены в прил. 4 и перенесены в табл. 2 . Уравнение регрессии имеет вид (см. «Коэффициенты» втабл. 2 ):

= 75.44 + 0.0447 x1 - 0.0453 x2 - 0.24 x4


Уравнение регрессии признается статистически значимым, так как вероятность его случайного формирования в том виде, в котором оно получено, составляет 1.0457110-45 (см. «Значимость F» втабл. 2 ), что существенно ниже принятого уровня значимости a=0,05.

Вероятность случайного формирования коэффициентов при факторе Х 1 ниже принятого уровня значимости a=0,05 (см. «P-Значение» втабл. 2 ), что свидетельствует о статистической значимости коэффициентов и существенном влиянии этих факторов на изменение годовой прибыли Y .

Вероятность случайного формирования коэффициентов при факторах Х 2 и Х 4 превышает принятый уровень значимости a=0,05 (см. «P-Значение» втабл. 2 ), и эти коэффициенты не признаются статистически значимыми.

р ис. 2. Панель регрессионного анализа модели Y ( X 1 , X 2 , X 4 )

Таблица 2

Результаты регрессионного анализа модели Y ( X 1 , X 2 , X 4 )

Регрессионная статистика
Множественный R 0,97292594
R-квадрат 0,946584884
Нормированный R-квадрат 0,944359254
Стандартная ошибка 2,267611945
Наблюдения 76

Дисперсионный анализ
df SS MS F Значимость F
Регрессия 3 6560,929292 2186,98 425,31101 1,04571E-45
Остаток 72 370,2286032 5,14206
Итого 75 6931,157895
Уравнение регрессии
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
Y-пересечение 75,43927547 0,998411562 75,5593 2,545E-70 73,44897843 77,4295725 73,44897843 77,42957252
X1 0,044670594 0,01380341 3,2362 0,0018316 0,017154 0,07218719 0,017154 0,072187188
X2 -0,045296701 0,421363275 -0,1075 0,914691 -0,885269026 0,79467562 -0,885269026 0,794675624
X4 -0,239566687 0,013204423 -18,1429 1,438E-28 -0,265889223 -0,2132442 -0,265889223 -0,213244151

3.По результатам проверки статистической значимости коэффициентов уравнения регрессии, проведенной в предыдущем пункте, строим новую регрессионную модель, содержащую только информативные факторы, к которым относятся:

· факторы, коэффициенты при которых статистически значимы;

· факторы, у коэффициентов которых t статистика превышает по модулю единицу (другими словами, абсолютная величина коэффициента больше его стандартной ошибки).

К первой группе относится фактор Х 1 ко второй — фактор X 4 . Фактор X 2 исключается из рассмотрения как неинформативный, и окончательно регрессионная модель будет содержать факторы X 1 , X 4 .

Для построения уравнения регрессии скопируем на чистый рабочий лист значения используемых переменных (прил. 5) и проведем регрессионный анализ (рис. 3 ). Его результаты приведены в прил. 6 и перенесены в табл. 3 . Уравнение регрессии имеет вид:

= 75.38278 + 0.044918 x1 - 0.24031 x4

(см. «Коэффициенты» втабл.3 ).

р ис. 3. Панель регрессионного анализа модели Y ( X 1 , X 4 )

Таблица 3

Результаты регрессионного анализа модели Y ( X 1 , X 4 )

Регрессионная статистика
Множественный R 0,972922
R-квадрат 0,946576
Нормированный R-квадрат 0,945113
Стандартная ошибка 2,252208
Наблюдения 76
Дисперсионный анализ
df SS MS F Значимость F
Регрессия 2 6560,87 3280,435 646,7175 3,65E-47
Остаток 73 370,288 5,072439
Итого 75 6931,158
Уравнение регрессии
Коэффициенты Стандартная ошибка t-статистика P-Значение
Y-пересечение 75,38278 0,843142 89,40701 2,44E-76
X1 0,044918 0,013518 3,322694 0,001395
X4 -0,24031 0,011185 -21,4848 2,74E-33

Уравнение регрессии статистически значимо: вероятность его случайного формирования ниже допустимого уровня значимости a=0,05 (см. «Значимость F» втабл.3 ).

Статистически значимым признается и коэффициент при факторе Х 1 вероятность его случайного формирования ниже допустимого уровня значимости a=0,05 (см. «P-Значение» втабл. 3 ). Это свидетельствует о существенном влиянии ВВП в паритетах покупательной способностиX 1 на изменение годовой прибылиY .

Коэффициент при факторе Х 4 (годовой коэффициент младенческой смертности) не является статистически значимым. Однако этот фактор все же можно считать информативным, так как t статистика его коэффициента превышает по модулю единицу, хотя к дальнейшим выводам относительно фактора Х 4 следует относиться с некоторой долей осторожности.

4.Оценим качество и точность последнего уравнения регрессии, используя некоторые статистические характеристики, полученные в ходе регрессионного анализа (см. «Регрессионную статистику » в табл. 3 ):

· множественный коэффициент детерминации

n

( i - y)2

R2 = _i=1 ____________ = 0.946576

n

( i - y)2

i=1

R 2 = показывает, что регрессионная модель объясняет 94,7 % вариации средней ожидаемой продолжительности жизни при рожденииY , причем эта вариация обусловлена изменением включенных в модель регрессии факторов X 1 , X 4 ;

· стандартная ошибка регрессии

показывает, что предсказанные уравнением регрессии значения средней ожидаемой продолжительности жизни при рожденииY отличаются от фактических значений в среднем на 2,252208 лет.

Средняя относительная ошибка аппроксимации определяется по приближенной формуле:


Sрег

Eотн 0,8 — 100%=0.8 2.252208/66.9 100%2.7

y

где тыс. руб. — среднее значение продолжительности жизни (определено с помощью встроенной функции «СРЗНАЧ »; прил. 1 ).

Е отн показывает, что предсказанные уравнением регрессии значения годовой прибыли Y отличаются от фактических значений в среднем на 2,7 %. Модель имеет высокую точность (при — точность модели высокая, при — хорошая, при — удовлетворительная, при — неудовлетворительная).

5.Для экономической интерпретации коэффициентов уравнения регрессии сведем в таблицу средние значения и стандартные отклонения переменных в исходных данных (табл. 4 ) . Средние значения были определены с помощью встроенной функции «СРЗНАЧ », стандартные отклонения — с помощью встроенной функции «СТАНДОТКЛОН » (см. прил. 1 ).

Таблица 4

Средние значения и стандартные отклонения используемых переменных

Переменная Y X 1 X 4
Среднее 66,9 29,75 40,9
Стандартное отклонение 9,6 28,76 34,8

1) Фактор X 1 ( ВВП в паритетах покупательной способности)

Значение коэффициента b 1 =0,044918 показывает, что рост ВВП в паритетах покупательной способности на 1 %. приводит к повышению средней ожидаемой продолжительности жизни при рождении на 0,044918 лет.

Средний коэффициент эластичности фактораX 1 имеет значение

x1 29.75

Е1 = b1 = 0.044918 ____ 0.01997

y66.9

Он показывает, что при увеличении ВВП в паритетах покупательской способности на 1 % годовая прибыль увеличивается в среднем на 0,01997 %.

2) Фактор X 4 ( коэффициент младенческой смертности)

Значение коэффициента b 4 =(-0,24031) показывает, что рост коэффициента младенческой смертности на 1 %. приводит к уменьшению средней ожидаемой продолжительности жизни при рождении в среднем на -0,24031 лет.

Средний коэффициент эластичности фактораX 4 имеет значение

x4 40.9

Е4 = b4 = - 0.24031 ____ 0.1469

y66.9

Он показывает, что при увеличении коэффициента младенческой смертности на 1 % средняя ожидаемая продолжительность жизни увеличивается в среднем на 0,1469 %.

Средний коэффициент эластичности для фиктивных переменных лишен смысла, поэтому не рассчитывается.

Сравним между собой силу влияния факторов, включенных в регрессионную модель, на годовую прибыль, для чего определим их бета–коэффициенты:


Sx 1 28.76

B1 = b1 = 0.044918 ____ 0.1346;

Sy 9.6

Sx 4 3 4.8

B4 = b4 - 0.24031 ____ - 0.8711

Sy 9.6

Сравнивая по абсолютной величине значения бета–коэффициентов, можно сделать вывод о том, что на изменение средней ожидаемой продолжительности жизни при рождении Y сильнее всего влияет ВВП в паритетах покупательской способности Х 1 , далее по степени влияния следует коэффициент младенческой смертности Х 4 .

Определим дельта–коэффициенты факторов:

ry , x 1 0.780235

1 = B1 ___ = 0.1346 _______ 0.11094;

R2 0.946585

ry , x 4 - 0.96876

4 = B4 ___ = - 0.8711 _______ 0.8915;

R2 0.946585

где ry , x 1 =0,780235; ry , x 4 =(–0,96876); — коэффициенты корреляции между парами переменных YX 1 и YX 4 соответственно (см. табл. 1 ); R 2 =0,946585 — множественный коэффициент детерминации (см. табл. 3 ).

Сумма дельта–коэффициентов факторов, включенных в модель, должна быть равна единице. Небольшое неравенство может быть вызвано погрешностями промежуточных округлений.

Таким образом, в суммарном влиянии на среднюю ожидаемую продолжительность жизни при рожденииY всех факторов, включенных в модель, доля влияния ВВП в паритетах покупательной способности X 1 составляет 11,094 %, коэффициента младенческой смертности Х 4 — 89,15 %.

6.Рассчитаем прогнозное значение годовой прибыли, если прогнозные значения факторов составят 75 % от своих максимальных значений в исходных данных. Максимальные значения факторов были определены с помощью встроенной функции «МАКС » (см. прил. 1 ). Прогнозные значения рассчитываются только для количественных факторов X 1 и X 4 :

· фактор Х 1 : х01 =0,75*х1 max =0.75*100=75;

· фактор Х 4 : x04 =0.75*x4max =0.75*124=93.

Среднее прогнозируемое значение (точечный прогноз) годовой прибыли государственной компании (x 06 =0) составляет:

Для частной компании (x 06 =1) этот показатель равен

Стандартная ошибка прогноза фактического значения годовой прибылиy 0 рассчитывается по формуле

Так как фиктивная переменная Х 6 может принимать два значения — 0 или 1, то Sy 0 определяется для обоих случаев:

· для государственных компаний (x 06 =0):

· для частных компаний (x 06 =1):

Построим интервальный прогноз фактического значения годовой прибыли y 0 с доверительной вероятностью g=0,8. Доверительный интервал имеет вид:

,

гдеt таб =1,321 — табличное значение t -критерия Стьюдента при уровне значимости и числе степеней свободы (p =4 — число факторов в модели) (см. Справочные таблицы ).

Для государственных компаний:

тыс. руб.

Таким образом, с вероятностью 80 % годовая прибыль государственных компаний при заданных значениях факторов будет находиться в интервале от 272,4 до 945,4 тыс. руб.

Для частных компаний:


тыс. руб.

С вероятностью 80 % годовая прибыль частных компаний будет находиться в интервале от 499,1 до 1173,7 тыс. руб.


[1] Для копирования снимка окна в буфер обмена данных WINDOWS используется комбинация клавиш Alt+PrintScreen (на некоторых клавиатурах — Alt+PrtSc).

Скачать архив с текстом документа