Расчет показателей планового задания численности, производительности, удельного веса и стоимости

СОДЕРЖАНИЕ: КОНТРОЛЬНАЯ РАБОТА по дисциплине: «Статистика» СОДЕРЖАНИЕ ЗАДАЧА 1 ЗАДАЧА 2 ЗАДАЧА 3 ЗАДАЧА 4 ЗАДАЧА 5 ЗАДАЧА 6 ЗАДАЧА 7 СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: «Статистика»

СОДЕРЖАНИЕ

ЗАДАЧА 1

ЗАДАЧА 2

ЗАДАЧА 3

ЗАДАЧА 4

ЗАДАЧА 5

ЗАДАЧА 6

ЗАДАЧА 7

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


ЗАДАЧА 1. Для выявления зависимости между возрастом и числом членов семьи произвести группировку рабочих с порядковыми номерами с 1 по 15 включительно, приведенными в таблице 1. Результаты группировки изложить в табличной форме и сделать выводы.

Выборочные данные обследования рабочих завода

Таблица 1

№ п/п Возраст, лет Число членов семьи
1 25 2
2 22 1
3 34 4
4 28 3
5 22 2
6 35 4
7 27 3
8 40 5
9 38 4
10 32 4
11 30 3
12 23 2
13 25 1
14 31 2
15 27 3

Решение: Произведем группировку и данные занесем в таблицу 2.

Таблица 2

№ п/п Число членов семьи Возраст, лет
1 1 22-25
2 2 22-31
3 3 27-30
4 4 32-38
5 5 40

Вывод: в возрасте от 22 до 31 года число членов семьи колеблется от 1 до 3 человек, с увеличение возраста до 38 лет, количество членов семьи возрастает до 4 человек, и в возрасте 40 лет – до 5 человек, т.е. с увеличением возраста увеличивается количество членов семьи.

ЗАДАЧА 2. Рассчитать абсолютные и относительные показатели планового задания по численности рабочих и производительности труда на основании данных, приведенных в таблице 3.

Таблица 3

Показатели Фактически за предыдущий год За отчетный год
фактически % выполнения плана

Среднесписочная численность, чел.

Производительность труда, т/чел.

188

9,6

170

11,5

98

112

Решение:

Относительный показатель планового задания (коэффициент планового задания) по численности рабочих:

Кпл.зад. = = = 0,92 · 100 – 100 = - 8 %

где, Уп – план (170 · 100 : 98 = 173)

Уо - базисный уровень, 188

Абсолютный показатель планового задания по численности рабочих:

188 – 173 = 15чел.

где, 188 - базисный уровень, 173 – план.

Вывод: запланировано, по сравнению с предыдущим годом снизить среднесписочную численность в 0,92 раза или на 8%, что соответствует количеству 15 человек.

Относительный показатель планового задания (коэффициент планового задания) по производительности труда

Кпл.зад. = = = 1,07 · 100 – 100 = 7 %

где, Уп – план (11,5 · 100 : 112 = 10,3); Уо - базисный уровень, 9,6

Абсолютный показатель планового задания по производительности труда 10,3 - 9,6 = 0,7 т/чел

где, 9,6 - базисный уровень, 10,3 – план.

Вывод: запланировано, по сравнению с предыдущим годом, увеличить производительность труда в 1,07 раза или на 7%, что соответствует 0,7 т/чел.

ЗАДАЧА 3. Имеются следующие данные (таблица 4) об удельном весе продукции 1 сорта в общем выпуске по двум предприятиям:

Таблица 4

№ предприятия Общее количество выпущенной продукции, тыс. шт. Удельный вес продукции 1 сорта, %
1 800 55
2 745 41

Решение: рассчитаем количество продукции 1 сорта в тыс. шт. по каждому предприятию отдельно.

55 · 800 : 100 = 440 тыс.шт. продукции 1 сорта было выпущено на первом предприятии.

41 · 745 : 100 = 375 тыс.шт. продукции 1 сорта было выпущено на втором предприятии.

Всего по двум предприятиям: 440 + 375 = 815 тыс.шт. продукции 1 сорта Общее количество выпущенной продукции на двух предприятиях:

800 + 745 = 1545 тыс.шт.

Рассчитаем средний удельный вес продукции 1 сорта в общем выпуске по двум предприятиям, вместе взятым:

Удельный вес = · 100 = = 53 %

Вывод: средний удельный вес продукции 1 сорта в общем выпуске по двум предприятиям составляет 53 %.

ЗАДАЧА 4. По нижеследующим данным о запасах угля на складе шахты на 2007г., (в тыс.т) вычислить среднюю величину запаса всеми возможными способами: 1) за каждый месяц; 2) за каждый квартал; 3) за каждое полугодие; 4) за год.

1.01. – 15,0 1.06. – 17,3 1.11. – 14,9
1.02. – 14,8 1.07. – 17,9 1.12. – 14,5
1.03. – 15,5 1.08. – 17,5 1.01.2008г. – 14,1
1.04. – 16,2 1.09. – 16,9
1.05. – 16,8 1.10. – 15,1

Решение : найдем среднюю хронологическую величину

Х=

1) Х январь = = 14,9 тыс.т.; Х февраль = = 15,2 тыс.т.

Х март = = 15,9 тыс.т.; Х апрель = = 16,5 тыс.т.

Х май = = 17,0 тыс.т.; Х июнь = = 17,6 тыс.т.


Х июль = = 17,7 тыс.т.; Х август = = 17,2 тыс.т.

Х сентябрь = = 16,0 тыс.т.; Х октябрь = = 15,0 тыс.т.

Х ноябрь = = 14,7 тыс.т.; Х декабрь = = 14,4 тыс.т.

2) Х I квартал = = 15,1 тыс.т.;

Х II квартал = = 16,8 тыс.т.;

Х III квартал = = 17,4 тыс.т.;

Х IV квартал = = 14,8 тыс.т.

3) Х 1 полугодие = = 15,9 тыс.т.

Х 2 полугодие == 16,1

4) Х год = =

= 16,0 тыс.т.

ЗАДАЧА 5. Определить влияние структурных сдвигов на изменение средней себестоимости 1 т продукции и абсолютное изменение ее за счет структурных сдвигов по данным, приведенным в таблице 5:

Таблица 5

№ п/п Объем выпущенной продукции, тыс.т Себестоимость 1 т. р.
базисный год отчетный год базисный год отчетный год
1 165 125 180 165
2 385 375 65 85

Решение:

1 предприятие

Влияние структурных сдвигов на изменение себестоимости 1 т продукции.

Определим коэффициент динамики по объему выпущенной продукции:

Кд = = = 0,76 · 100 – 100 = -24%

где, yi – отчетный год, y 1 – базисный год

Вывод: в отчетном году, по сравнению с базисным, объем выпущенной продукции снизился в 0,76 раз или на 24 %.

Определим коэффициент динамики по себестоимости 1 т продукции:

Кд = = = 0,92 · 100 – 100 = - 8%

где, yi – отчетный год, y 1 – базисный год

Вывод: в отчетном году, по сравнению с базисным, себестоимость 1 т продукции снизилась в 0,92 раза или на 8 %.

Абсолютное изменение по объему выпущенной продукции .

Бсх = yi y 1 = 125 – 165 = - 40 тыс.т

где, yi – отчетный год, y 1 – базисный год

Объем выпущенной продукции за отчетный год снизился на 40 тыс.т. по сравнению с базисный годом

Абсолютное изменение по средней себестоимости продукции .

Бсх = yi y 1 = 165 – 180 = - 15 р.

Себестоимость одной т за отчетный год снизилась на 15 рублей по сравнению с базисный годом.

Вывод: с учетом уменьшения выпуска продукции на 24 % (в 0,76 раз) себестоимость 1 т продукции снижается на 8 % (в 0,92 раза) или с учетом снижения объема выпуска продукции на 40 тыс.т. себестоимость 1 т продукции снижается на 15 рублей.

2 предприятие

Влияние структурных сдвигов на изменение себестоимости 1 т продукции.

Определим коэффициент динамики по объему выпущенной продукции:

Кд = = = 0,97 · 100 – 100 = - 3%

где, yi – отчетный год, y 1 – базисный год

Вывод: в отчетном году, по сравнению с базисным, объем выпущенной продукции снизился в 0,97 раз или на 3 %.

Определим коэффициент динамики по себестоимости 1 т продукции:

Кд = = = 1,31 · 100 – 100 = 31%

где, yi – отчетный год, y 1 – базисный год

Вывод: в отчетном году, по сравнению с базисным, себестоимость 1 т продукции увеличилась в 1,31 раза или на 31 %.

Абсолютное изменение по объему выпущенной продукции .


Бсх = yi y 1 = 375 – 385 = - 10 тыс.т

где, yi – отчетный год, y 1 – базисный год

Объем выпущенной продукции за отчетный год снизился на 10 тыс.т. по сравнению с базисный годом

Абсолютное изменение по средней себестоимости продукции .

Бсх = yi y 1 = 85 – 65 = 20 р.

Себестоимость одной т за отчетный год увеличилась на 20 рублей по сравнению с базисный годом.

Вывод: с учетом снижения выпуска продукции на 3 % (0,97 раз) себестоимость 1 т продукции увеличивается на 31 % (в 1,31 раз) или с учетом снижения объема выпуска продукции на 10 тыс.т. себестоимость 1 т продукции увеличивается на 20 рублей.

ЗАДАЧА 6. С целью изучения производительности труда обследовано 19 % рабочих завода. В выборку попало 324 рабочих. Средние затраты времени на обработку одной детали этими рабочими составляют 35 минут при среднеквадратичном отклонении 7,2 минуты. С вероятностью 0,954 рассчитайте пределы, в которых будут находиться средние затраты времени на обработку одной детали на всем заводе.

Дано:

N – 1705 рабочих (объем генеральной совокупности), N = 100 · 324 : 19 = 1705

n – 324 рабочих (объем выборки, число обследованных мест)

в – 35 минут

- 7,2 минуты

- ?

Решение:

– средняя генеральная; в – средняя выборочная

= в ± µх

µх – средняя ошибка выборки

µ = = = 0,4 минуты

Є [в - µх ; в + µх ]

Є [35– 0,4; 35+ 0,4]

Є [34,6; 35,4]

Вывод : средние затраты времени на обработку одной детали на всем заводе находятся в пределах от 34,6 до 35,4 минут с вероятностью 0,954.

ЗАДАЧА 7. По условию задачи № 1 (данные таблицы 2) рассчитать уравнение регрессии, характеризующее параболическую зависимость между возрастом рабочего и числом членов его семьи. Определите тесноту связи между указанными признаками и постройте график фактических и теоретических значений результативного признака.

Решение: в данной задаче возраст является факторным (независимым) признаком, количество членов семьи результативным (зависимым) признаком.

Уравнение параболической линии имеет вид:

y = ao + a 1 x + a 2 x 2

где, а2 – характеризует степень ускорения или замедления кривизны параболы и при а2 0 парабола имеет минимум, а при а2 0 – максимум;

а1 – характеризует крутизну кривой;

ао – вершина кривой.

Решим систему трех нормальных уравнений

y = nao + a1 x + a2 x2

xy = ao x + a1 x2 + a2 x3

x2 y = ao x2 + a1 x3 + a2 х 4

Для решения уравнений составим расчетную таблицу (таблица 6)

Таблица 6

№ п/п x y xy x2 x3 x4 x2y y
1 23,5 1 24 552,25 12977,875 305003,563 552,25 1,1
2 26,5 2 53 702,25 18609,625 493181,563 1404,50 2,1
3 28,5 3 86 812,25 23149,125 659778,563 2436,75 2,7
4 35 4 140 1225,00 42875,000 1500660,000 4900,00 4,2
5 40 5 200 1600,00 64000,000 2560040,000 8000,00 4,9
Итого 153,5 15 502 4891,75 161611,625 5518663,688 17293,50 15

Подставим данные таблицы в систему нормальных уравнений:

15 = 5ао + 153,5а1 + 4891,75а2

502 = 153,5ао + 4891,75а1 + 161611,625а2

17293,50 = 4891,75ао + 161611,625а1 + 5518663,688а2

Поделим каждый член уравнения на коэффициенты при ао и получим следующее значение:

3 = ао + 30,7а1 + 978,35а2

3,27 = ао + 31,868а1 + 1052,844а2

3,535 = ао + 33,038а1 + 1128,157а2

Вычтем из второго уравнения первое, из третьего – второе:


0,270 = 1,168а1 + 74,494 а2

0,265 = 1,170а1 + 75,313 а2

Поделим каждый член уравнения на коэффициенты при а1 :

0,231 = а1 + 63,779а2

0,226 = а1 + 64,370а2

Вычтем из второго уравнения первое и получим:

- 0,005 = 0,591а2 , откуда а2 = = - 0,008

Подставим значение в уравнение:

0,231 = а1 + 63,779 (- 0,008)

0,231 = а1 – 0,510, откуда а1 = 0,231 + 0,510 = 0,741

Методом подстановки получаем:

3 = ао + 30,7 · 0,741 + 978,35 · (- 0,008)

3 = ао + 22,749 – 7,827

3 = ао + 14,922, откуда ао = 3 – 14,922 = - 11,922

Запишем уравнение параболы:

y = - 11,922 + 0,741х - 0,008х2

Определим теоретические значения у, для чего в уравнение кривой подставим значения х (таблица 6).

Построим график фактических и теоретических значений результативного признака.


СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Годин А.М. Статистика. - Москва, 2003г.

2. Глинский В.В. Сборник задач по общей теории статистики.- Москва, 1999г.

3. Громыко Т.Л. Общая теория статистики. Москва. 2000г.

4. Лысенко С.Н. Общая теория статистики. Москва. 2006г.

5. Шмойлова Р.А. Теория статистики. Учебное пособие. – Москва. 2002г.

Скачать архив с текстом документа