Расчет прочности крайней колонны одноэтажной рамы промышленного здания
СОДЕРЖАНИЕ: Нижегородский государственный архитектурно-строительный университет Институт открытого дистанционного образования Курсовая работа РАСЧЕТ ПРОЧНОСТИ КРАЙНЕЙ КОЛОННЫ ОДНОЭТАЖНОЙ РАМЫ ПРОМЫШЛЕННОГО ЗДАНИЯ В СБОРНОМ ЖЕЛЕЗОБЕТОНЕНижегородский государственный
архитектурно-строительный университет
Институт открытого дистанционного образования
Курсовая работа
РАСЧЕТ ПРОЧНОСТИ КРАЙНЕЙ КОЛОННЫ ОДНОЭТАЖНОЙ РАМЫ ПРОМЫШЛЕННОГО ЗДАНИЯ В СБОРНОМ ЖЕЛЕЗОБЕТОНЕ
г. Нижний Новгород – 2010г
1. РАСЧЕТ КОЛОНН ПО НЕСУЩЕЙ СПОСОБНОСТИ
1.1 Общие указания по расчету
Расчет железобетонных колонн поперечника одноэтажной рамы промышленного здания по несущей способности состоит из следующих этапов:
- определения сечения продольной арматуры;
- проверки прочности на усилия при съеме с опалубки, транспортировании и монтаже;
- проверки прочности на внецентренное сжатие из плоскости рамы поперечника;
- расчета подкрановых консолей.
1.2 Расчет крайней колонны
1.2.1 Расчёт продольной арматуры
Площадь продольной арматуры колонн определяется из расчета сечений их на внецентренное сжатие в плоскости рамы поперечника по наиболее невыгодным расчетным сочетаниям усилий:
maxM®N, min M®N, maxN®±M
При этом можно принимать симметричное и несимметричное армирование колонн. Несимметричное армирование применяют в крайних колоннах рам поперечника промышленных зданий, а также при большой разнице абсолютных значений положительных и отрицательных моментов в расчетных сечениях. При небольшой разнице этих моментов и в средних колоннах — всегда применяют симметричное армирование. Рабочую арматуру колонн при внецентренном сжатии принимают классов A400 или
А300 диаметром не менее 16 мм. Сечение I-I (подкрановая часть колонны) Размеры сечения:
Высота h = 500 мм, ширина b = 400 мм, a = a = 50 мм, рабочая высота h0 = 500 – 50 = 450 мм. Бетон тяжелый класса В15, Rb = 8,5 мПа; Eb = 24,0*103 мПа. Продольная арматура класса А400, RS =RSC =355 мПа; поперечная - класса А240, ES =2105 мПа.
2. Усилия. Наиболее невыгодные комбинации усилий:
а) из первых основных сочетаний без учёта крановой нагрузки:
М1 = +44,76 кНм и -45,83 кНм при N1 = 340,02 кН;
б) из вторых основных сочетаний - с учетом крановой нагрузки:
М2 = +89,32 кНм и -31,76 кНм при N2 = 741,67 кН.
Для данных комбинаций усилий принимаем симметричное армирование колонны и для расчета имеем следующие комбинации усилий:
а) первая комбинация усилий без учёта крановой нагрузки.
М1 = ±45,83 кНм; N1 = 340,02 кН;
б) вторая комбинация усилий с учетом крановой нагрузки:
М2 = ±89,32 кНм; N2 = 741,67 кН.
Для обеих комбинаций длительная часть усилий:
Mдл = Mпост = +1,25 кНм; Nдл = Nпост = 340,02 кН.
3. Расчетная длина и гибкость колонны
Расчетная длина подкрановой части колонны в плоскости поперечной рамы:
а) для первой комбинации усилий без учёта крановой нагрузки:
lон = 1,2 HК =1,211,0 = 13,2 м;
(для однопролетных зданий без учета крана lон = 1,5 HК )
б) для второй комбинации усилий при учете крановой нагрузки:
lон = 1,5 Hн = 1,5 6,9 = 10,35 м.
Гибкость колонны:
а) ; б) ,
следовательно, необходимо учитывать влияние прогиба колонны на величину эксцентриситета приложения продольных сил.
4. Определение эксцентриситетов приложения продольных сил
Величина случайного эксцентриситета:
Принимаем ; Принимаем;
Величина расчётного эксцентриситета:
;
Колонна является элементом статически неопределимой конструкции – поперечной рамы. Поэтому, согласно п.4.2.6 [3] принимаем величину эксцентриситета приложения продольных сил без учёта случайного эксцентриситета:
е01 = ест 01 = 135 мм, е02 = ест 02 = 120 мм.
5. Определение величин условных критических сил
Величину условной критической силы определяем по формуле (6.24):
где D – жесткость железобетонного элемента, определяемая для элементов прямоугольного сечения по формуле (3.89) [4]:
а) первая комбинация усилий:
Эксцентриситет приложения длительной части нагрузки:
Моменты внешних сил относительно растянутой арматуры сечения: - от действия всей нагрузки:
- от действия длительной части нагрузки
Коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента:
Суммарный коэффициент армирования для арматуры и принимаем равным 0,005, исходя из
при гибкости
(табл. 5.2).
Отношение модулей упругости материалов:
Жёсткость колонны:
Условная критическая сила:
б) вторая комбинация усилий:
Моменты внешних сил относительно растянутой арматуры сечения:
- от действия всей нагрузки:
- от действия длительной части нагрузки
Коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента:
Суммарный коэффициент армирования принимаем равным 0,004, при гибкости
(табл. 5.2 [4]).
Жёсткость колонны:
Условная критическая сила:
6. Учет влияния прогиба и определение величин эксцентриситетов «е»
Влияние прогиба колонны на величину эксцентриситета приложения продольного усилия учитываем путем умножения величины на коэффициент, определяемый по формуле 6.23:
(2)
а) первая комбинация усилий:
Эксцентриситет приложения продольной силы относительно растянутой арматуры :
б) вторая комбинация усилий:
7. Определение площади сечения арматуры
Граничное значение относительной высоты сжатой зоны бетона:
,
где:
а) первая комбинация усилий:
Определяем параметры d, am и an :
Т.к. , площадь сечения симметричной арматуры определяем по формуле:
Принимаем
.
б) вторая комбинация усилий:
Т.к. , то:
Принимаем
По конструктивным требованиям в колоннах при b(h) 250мм диаметр продольных стержней должен быть не менее 16мм (п.5.17 [4].
Тогда
Арматуру подбираем по большей из трёх площадей, полученных при расчёте:
Назначаем с каждой стороны сечения
A400 с
Сечение II-II (надкрановая часть колонны).
1. Размеры сечения
Размеры сечения:
Бетон тяжелый класса B15, арматура класса A400 (та же, что в
сечении I-I).
2. Усилия
Невыгодные комбинации расчетных усилий выбираем из вторых основных сочетаний–с учетом крановой нагрузки:
Для данных комбинаций усилий принимаем для надкрановой части колонны несимметричное армирование и для расчёта имеем следующие комбинации усилий.
а) М1 = +89,51 кН*м; N1 = 257,23 кН;
б) M2 = +86,51 кН*м; N2 = 368,04 кН.
В том числе длительная часть нагрузки:
3. Расчетная длина и гибкость колонны
При учёте в расчёте крановой нагрузки:
Без учёта крановой нагрузки:
Гибкость:
Следовательно необходимо учитывать влияние прогиба на величину эксцентриситета продольных сил.
4. Определение эксцентриситетов продольных сил
Величина случайного эксцентриситета продольных сил:
Принимаем
Величина расчётного эксцентриситета:
;
;
Т.к. поперечная рама – статически неопределимая конструкция при определении эксцентриситета приложения продольных сил не учитываем величину случайного эксцентриситета (п.4.2.6 [3]):
е01 = ест 01 = 348 мм, е02 = ест 02 = 235 мм.
5. Определение величин условных критических сил
а) первая комбинация усилий:
Эксцентриситет приложения длительной части нагрузки:
Моменты внешних сил относительно растянутой арматуры сечения:
- от действия всей нагрузки:
- от действия длительной части нагрузки
Коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента:
Суммарный коэффициент армирования =0,004, исходя из
при гибкости (табл. 5.2).
Жёсткость колонны:
Условная критическая сила:
б) вторая комбинация усилий:
Эксцентриситет приложения длительной части нагрузки:
Моменты внешних сил относительно растянутой арматуры сечения:
- от действия всей нагрузки:
- от действия длительной части нагрузки
Коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента:
Жёсткость колонны:
Условная критическая сила:
6. Учет влияния прогиба и определение величин эксцентриситетов «е»
а) первая комбинация усилий:
Эксцентриситет приложения продольной силы относительно растянутой арматуры :
б) вторая комбинация усилий:
7. Определение площади сечения арматуры
Если
то формулах для расчёта арматуры вместо подставляют 0,4, а вместо - 0,55.
а) первая комбинация усилий:
Площадь сечения сжатой арматуры:
Принимаем
Так как принятая площадь сечения сжатой арматуры
значительно превышает её значения, вычисленное по формуле:
то площадь сечения растянутой арматуры определяем по формуле (3.107 [4]):
б) вторая комбинация усилий:
Арматуру подбираем по большей из трёх площадей, полученных при расчёте по обеим комбинациям усилий для каждой из арматур.
Сжатую арматуру подбираем по
Растянутую арматуру - по
Принимаем сжатую арматуру на внешней стороне сечения А400 с
растянутую арматуру на внутренней стороне сечения А400 с
1.2.2 Проверка прочности колонны при съёме с опалубки, транспортировании и монтаже
Помимо расчета на эксплутационные усилия, колонны проверяются на прочность как изгибаемые элементы от действия усилий, возникающих при съеме их с опалубки после изготовления, а также транспортировании и монтаже. Нагрузкой здесь является собственный вес колонны с учетом коэффициентов динамичности: при транспортировании - 1,6, подъеме и монтаже - 1,4, с учетом коэффициента надежности по нагрузке gf =1,1 (п.1.9).
Отрыв и съем с опалубки, складывание и транспортирование колонн производятся обычно после достижения бетоном 70% проектной прочности, т.е. Rb 0 =0,7Rb . Строповка при съеме колонн, а также укладка их при складировании и транспортировании производятся в положении «плашмя» траверсой за две точки. При этом петли для съема с опалубки располагаются обычно на расстояниях: два метра от низа колонны и 0,4 метра выше верха консоли. В этих же местах располагаются и опоры колонн при их складировании и транспортировании. Для одинаковых расчетных схем колонн – съема с опалубки и транспортирования – более невыгодной при проверке прочности является последняя, так как коэффициент динамичности (кдин ) здесь равен 1,6 вместо 1,4 для съема с опалубки. Монтаж колонн может выполняться сразу же после их изготовления и транспортирования. Поэтому здесь в расчет принимается прочность бетона, составляющая 70% от проектной прочности. Строповка при монтаже колонн осуществляется в положении «на ребро» за одну точку инвентарными приспособлениями вставляемое в отверстие, расположенное на расстоянии 600 мм от верха консоли.
1. При съёме с опалубки и транспортировании :
1) Нагрузка от веса колонны с учётом коэффициента динамичности
2) Изгибающие моменты в расчётных сечениях 1-1, 2-2, 3-3:
3). Проверка прочности колонны в расчётных сечениях:
а) сечение 1-1:
Несущую способность определяем как для балки с двойной симметричной арматурой без учёта работы сжатого бетона.
Следовательно, прочность колонны по сечению 1-1 обеспечена.
б) сечение 2-2:
Рисунок 1. Расчётная схема и эпюра моментов для крайней колонны при съеме с опалубки и транспортировании
Следовательно, прочность колонны по сечению 2-2 обеспечена.
б) сечение 3-3:
;
.
Следовательно, прочность колонны по сечению 3-3 обеспечена.
2. При монтаже:
1) Нагрузка от веса колонны с учётом коэффициента динамичности :
2) Изгибающие моменты в расчётных сечениях 1-1, 2-2, 3-3:
определяем на расстоянии Х от левой опоры:
3) Проверка прочности колонны в расчётных сечениях:
а) сечение 1-1:
Несущую способность определяем как для балки с двойной симметричной арматурой без учёта работы бетона. При этом полагаем, в запас прочности,
(по меньшей величине площади сечения арматуры с одной стороны)
Следовательно, прочность колонны по сечению 1-1 не обеспечена, поэтому увеличиваем количество арматуры с внешней стороны надкрановой части колонны и принимаем
Тогда:
Прочность колонны по сечению 1-1 обеспечена.
б) сечение 2-2:
Проверку несущей способности колонны в сечении 2-2 не производим, т.к. высота сечения здесь , что в 2,76 раза больше, чем в сечении 1-1, а величина момента больше всего в 1,32 раза. Поэтому прочность колонны по сечению 2-2 заведомо обеспечена.
в) сечение 3-3:
Следовательно, прочность колонны по сечению 3-3 обеспечена.
Рисунок 2. Расчётная схема и эпюра моментов для крайней колонны при монтаже
На основании выполненных расчётов колонны в стадии эксплуатации и проверки её несущей способности на усилия, возникающие при съёме опалубки, транспортировании и монтаже окончательно принимаем армирование крайней колонны :
- подкрановая часть: - с каждой стороны сечения;
- надкрановая часть: - с внутренней стороны сечения,
- с внешней стороны сечения.
Рисунок 3. Армирование поперечных сечений крайней колонны
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. СНиП 2.01.07-85*. Нагрузки и воздействия [Текст]: утв. Госстроем России 29.05.2003: взамен СНиП II-6-74: дата введения 01.01.87. – М.: ГУП ЦПП, 2003. – 44 с.
2. СНиП 52-01-2003. Бетонные и железобетонные конструкции. Основные положения [Текст]: утв. Государственным комитетом Российской Федерации по строительству и жилищно-коммунальному комплексу от 30.06.2003: взамен СНиП 2.03.01-84: дата введ. 01.03.2004. –М.: ГУП НИИЖБ, 2004. – 26
3. СП-52-101-2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры [Текст]: утв. Государственным комитетом Российской Федерации по строительству и жилищно-коммунальному комплексу от 30.06.2003: взамен СНиП 2.03.01-84: дата введ. 01.03.2004. – М.: ГУП НИИЖБ, 2004. – 55 с.
4. Пособие по проектированию бетонных и железобетонных конструкций из тяжёлого бетона без предварительного напряжения арматуры (к СП 52-101-2003) / ЦНИИПромзданий, НИИЖБ. – М.: ОАО ЦНИИПромзданий, 2005.
5. Руководство по расчёту статически неопределимых железобетонных конструкций [Текст]: Научно-исследовательский институт бетона и железобетона Госстроя СССР – М.: Стройиздат, 1975. – 192 с.
6. ГОСТ 23837-79. Здания промышленных предприятий одноэтажные. Габаритные схемы.
7. Справочник проектировщика. Типовые железобетонные конструкции зданий и сооружений для промышленного строительства. – М.: Стройиздат, 1981.
8. Шерешевский, И.А. Конструирование промышленных зданий и сооружений / И.А. Шерешевский. – Л.: Стройиздат, 1979.
9. Трепененков, Р.Н. Альбом чертежей конструкций и деталей промышленных зданий / Р.Н. Трепененков. – М.: Стройиздат, 1980.
10. Байков, В.Н. Железобетонные конструкции. Общий курс [Текст]: учеб. для вузов / В.Н. Байков, Э.Е. Сигалов. Изд. 5-е, перераб. и доп. – М.: Стройиздат, 1991. – 767 с.: ил.
11. Серия 1.424.1-5. Колонны железобетонные прямоугольного сечения для одноэтажных производственных зданий высотой 8,4-14,4 м. – М.: ЦИТП, 1985.
12. Серия 1.426.1-4. Балки подкрановые железобетонные под мостовые опорные краны общего назначения грузоподъемностью до 32 т. Вып. 1. – М.: ЦИТП, 1984.
13. Серия 1.412-1/77. Монолитные железобетонные фундаменты под типовые колонны прямоугольного сечения одноэтажных промышленных зданий. – М.: ЦИТП, 1978.
14. Вилков, К.И. Одноэтажная рама промздания в сборном железобетоне: учеб. пособие / К.И. Вилков, Н.И. Смолин. – Горький: ГИСИ, 1990.
15. Справочник проектировщика промышленных жилых и общественных зданий и сооружений. Расчетно-теоретический. Кн. 1. – М.: Стройиздат, 1972.
16. Улицкий, И.И. Железобетонные конструкции (расчет и конструирование) И.И. Улицкий и др. – Киев: «Будивельник», 1973.
Руководство по производству и применению