Расчет структурной схемы системы автоматического управления

СОДЕРЖАНИЕ: Определение передаточной функции разомкнутой системы, стандартной формы ее записи и степени астатизма. Исследование амплитудно-фазовой, вещественной и мнимой частотных характеристик. Построение годографа АФЧХ. Алгебраические критерии Рауса и Гурвица.

КУРСОВАЯ РАБОТА

по дисциплине:Теория автоматического управления

Уфа 2011


ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Вариант 16

Схема k1 k2 k3 k4 k5 T1 T2 T3 T4 T5
(а) 4 1.5 4 2 0.7 0.4 0.3 0.5 0.15 0.9 0.5

Схема а:

Для структурной схемы САУ, соответствующей выбранному варианту, выполнить следующие действия:

1) Определить передаточную функцию разомкнутой системы, привести ее к стандартной форме записи. Определить степень астатизма системы.

2) Определить амплитудно-фазовую, вещественную и мнимую частотные характеристики.

3) Построить годограф АФЧХ разомкнутой системы.

4) Найти выражения для асимптотической ЛАЧХ и ЛФЧХ разомкнутой системы.

5) Построить в масштабе ЛАЧХ и ЛФЧХ разомкнутой системы.

6) Определить устойчивость замкнутой САР с помощью критерия Найквиста и логарифмических частотных характеристик.

7) Найти запасы устойчивости системы по фазе и амплитуде.

8) Записать выражение для передаточной функции замкнутой системы и проверить выводы пункта 6 с помощью алгебраических критериев Рауса и Гурвица.

9) Проверить выводы пункта 6 с помощью частотного критерия Михайлова.

10) Найти коэффициенты С0 , С1 , С2 ошибок системы.

11) Построить с помощью ЭВМ переходную функцию замкнутой системы и оценить основные показатели качества регулирования (перерегулирование, и время регулирования) в системе.

передаточный астатизм амплитудный голограф


1. Передаточная функция разомкнутой системы

Упростим схему.

Где

; ; ; ; ; .

Перенесем сумматор.

Затем упростим.


Где

;

Где

;

Где

;

; ; ; ; .

;

;

Степень астатизма =0. Коэффициент передачи К=1.71. Постоянные времени: Т1 =0.15, Т2 =0.23, Т3 =0.23, Т4 =0.4, Т5 =0.39, Т6 =0.34, =0.24.

2. Частотная передаточная функция системы (sj)

Особые точки АФЧХ приведены в таблице 1.

Таблица 1.

0 2,85
P() 1.71 0 0
Q() 0 -2.46 0

3. Годограф АФЧХ разомкнутой системы

Годограф (рисунок 1) при =0 начинается на положительной вещественной полуоси. При через четвертый и третий квадранты стремиться к нулю. Пересекает при =0 вещественную ось в точке (1,71;j0) и при =2,85 пересекает мнимую ось в точке (0;-j2.46).

Рисунок 1.

4. Асимптотическая ЛАХ и ЛФХ

Асимптотическая ЛАХ:

Асимптотическая ЛФХ:


5. Построение в масштабе ЛАХ и ЛФХ системы

1) Значение ЛАХ при =1 равно 20lgK, где К – коэффициент передачи разомкнутой системы. К=1,71, значит ЛАХ пересекает ось L() на уровне 4.66.

2) Степень астатизма системы =0, следовательно наклон самой низкочастотной асимптоты равен 0 дБ/дек.

3) Таблица значений сопрягаемых частот.

Таблица 2.

Т 0.4 0.39 0.34 0.23 0.23 0.15
2.5 2.56 2.94 4.35 4.35 6.67
Изменение наклона (дБ/дек) -20 -20 -40 +20 +20 +20

Асимптотическая ЛАХ, построенная от руки (схематично) по информации из таблицы 2 показана на рисунке 2.

Рисунок 2.


На рисунке 3 показаны в масштабе ЛАХ и ЛФХ системы, построенные с помощью ЭВМ.

Рисунок 3.

6. Устойчивость замкнутой САУ с помощью критерия Найквиста и логарифмических частотных характеристик

Степень астатизма системы =0 и характеристический полином разомкнутой системы имеет все корни в левой половине комплексной плоскости, то критерий Найквиста будет следующим: Для того чтобы замкнутая САУ была устойчивой необходимо и достаточно, чтобы годограф амплитудно-фазовой характеристики разомкнутой системы не охватывал точку с координатами (-1; j0).

На рисунке 4 изображен годограф АФХ. Он не охватывает точку (-1; j0), следовательно, замкнутая система будет устойчивой.


Рисунок 4.

7. Запасы устойчивости по фазе и амплитуде

Как видно из рисунка 4 годограф не пересекает отрицательную вещественную полуось, следовательно, запас устойчивости по амплитуде 100%.

Рассчитаем запас устойчивости по фазе:

Найдем ср (частоту среза) из условия A()=1

ср =3,924 с-1

Таким образом запас по фазе составляет 39,230 .

Передаточная функция замкнутой системы может быть найдена по следующей формуле

Характеристический полином системы:

Определение устойчивости замкнутой системы методом Рауса.


Таблица Рауса.

a0 a2 a4
a1 a3 a5 =0
C13 =a2 -3 a3 C23 =a4 -3 a5 C33 =a6 -3 a7 3 =a0 /a1
C14 =a3 - 4 C23 C24 =a5 - 4 C33 C34 =0 4 =a1 /C13
C15 =C23 -5 C24 C25 =C33 -5 C34 C35 =0 5 =C13 /C14
C16 =C24 -6 C25 C26 =C34 -6 C35 C36 =0 6 =C14 /C15

Заполним таблицу.

0.018 0.612 2.71
0.1314 2 0
C13 =0.3384 C23 =2.71 C33 =0 3 =0.137
C14 =0.948 C24 =0 C34 =0 4 =0.388
C15 =2.71 C25 =0 C35 =0 5 =0.357
C16 =0 C26 =0 C36 =0 6 =0.34

Все элементы первого столбца таблицы имеют один и тот же знак, следовательно, характеристический полином замкнутой системы имеет корни только в левой половине комплексной плоскости. Замкнутая САУ устойчива.

Определение устойчивости замкнутой системы методом Гурвица.

Построим определители Гурвица

Все определители Гурвица положительны, следовательно, характеристический полином замкнутой системы имеет корни только в левой половине комплексной плоскости. Замкнутая САУ устойчива.

8. Определение устойчивости замкнутой системы с помощью частотного критерия Михайлова

Характеристический полином системы

sj

Вещественная функция Михайлова:

.

Мнимая функция Михайлова:


Решим уравнения

;.

,

Учитываем корни 0

; ;

; .

; ; .

Построим таблицу

0 2.88 3.9 5.36
Re() 2.71 0 -2.44 0
Im() 0 3 0 -9.57

Годограф Михайлова (в схематичном виде) представлен на рисунке 5.

Рисунок 5.


Критерий Михайлова: Замкнутая САУ будет устойчивой тогда и только тогда, когда годограф Михайлова, при изменении частоты от 0 до + начинаясь на положительной действительной полуоси последовательно и нигде не обращаясь в 0 пересекает n квадрантов комплексной плоскости (где n – порядок характеристического полинома САУ).

В данном случае годограф соответствует критерию Михайлова, значит замкнутая САУ устойчива.

9. Коэффициенты ошибок системы

Передаточная функция ошибки будет иметь вид


10. Переходная функция САУ

Найдем корни N(s):

Получим следующее:

Построим график с помощью ЭВМ.

График переходной функции.

Из графика видно, что время регулирования tp 3.29с, а перерегулирование

.

Скачать архив с текстом документа