Расчёт и проектирование установки для получения жидкого кислорода

СОДЕРЖАНИЕ: Санкт-Петербургский государственный Университет низкотемпературных и пищевых технологий. Кафедра криогенной техники. Курсовой проект по дисциплине «Установки ожижения и разделения газовых смесей»

Санкт-Петербургский государственный Университет

низкотемпературных и пищевых технологий.

Кафедра криогенной техники.

Курсовой проект

по дисциплине «Установки ожижения и разделения газовых смесей»

Расчёт и проектирование установки

для получения жидкого кислорода.

Работу выполнил

студент 452 группы

Денисов Сергей.

Работу принял

Пахомов О. В.

Санкт – Петербург 2003 год.

Оглавление.

Задание на расчёт…………………………………………………………………..3

1. Выбор типа установки и его обоснование……………………………………3

2. Краткое описание установки…………………………………………………..3

3. Общие энергетические и материальные балансы……………………….……4

4. Расчёт узловых точек установки…………………………….…………………4

5. Расчёт основного теплообменника…………………………….………………7

6. Расчёт блока очистки……………………………………………….…………..17

7. Определение общих энергетических затрат установки…………………..…..20

8. Расчёт процесса ректификации…………………………………….…………..20

9. Расчёт конденсатора – испарителя…………………………………………….20

10. Подбор оборудования…………………………………………………..………21

11. Список литературы……………………………………………..………………22

Задание на расчёт.

Рассчитать и спроектировать установку для получения газообразного кислорода с чистотой 99,5 %, производительностью 320 м3 /ч, расположенную в городе Владивостоке.

1. Выбор типа установки и его обоснование.

В качестве прототипа выбираем установку К – 0,4, т. к. установка предназначена для получения жидкого и газообразного кислорода чистотой 99,5 %, а также жидкого азота. Также установка имеет относительно несложную схему.

2. Краткое описание работы установки.

Воздух из окружающей среды, имеющий параметры Т = 300 К и Р = 0,1 МПа, поступает в компрессорную станцию в точке 1. В компрессоре он сжимается до давления 4,5 МПа и охлаждается в водяной ванне до температуры 310 К. Повышение температуры обусловлено потерями от несовершенства системы охлаждения. После сжатия в компрессоре воздух направляется в теплообменник – ожижитель, где охлаждается до температуры 275 К, в результате чего большая часть содержащейся в ней влаги конденсируется и поступает в отделитель жидкости, откуда выводится в окружающую среду. После теплообменника – ожижителя сжатый воздух поступает в блок комплексной очистки и осушки, где происходит его окончательная очистка от содержащихся в нём влаги и СО2 . В результате прохождения через блок очистки воздух нагревается до температуры 280 К. После этого поток сжатого воздуха направляется в основной теплообменник, где охлаждается до температуры начала дросселирования, затем дросселируется до давления Р = 0,65 МПа. В основном теплообменнике поток разделяется. Часть его выводится из аппарата и поступает в детандер, где расширяется до давления Р = 0,65 МПа и поступает в нижнюю часть нижней колонны.Поток из дросселя поступает в середину нижней колонны. Начинается процесс ректификации. Кубовая жидкость (поток R, содержание N2 равно 68%) из низа нижней колонны поступает в переохладитель, где переохлаждается на 5 К , затем дросселируется до давления 0,13 МПа и поступает в середину верхней колонны. Азотная флегма (поток D, концентрация N2 равна 97%) забирается из верхней части нижней колонны, пропускается через переохладитель, где также охлаждается на 5К, затем дросселируется до давления 0,13 МПа и поступает в верхнюю часть верхней колонны. В верхней колонне происходит окончательная ректификация, внизу верхней колонны собирается жидкий кислород, откуда он направляется в переохладитель, где переохлаждается на 8 – 10 К. Далее поток кислорода направляется в жидкостной насос, где его давление поднимается до 10 МПа, и обратным потоком направляется в основной теплообменник. Затем он направляется в теплообменник – ожижитель, откуда выходит к потребителю с температурой 295 К. Азот из верхней части колонны последовательно проходит обратным потоком переохладитель азотной флегмы и кубовой жидкости, оснновной теплообменник и теплообменник – ожижитель. На выходе из теплообменника – ожижителя азот будет иметь температуру 295 К.

3. Общие энергетические и материальные балансы.

V = K + A

0,79V = 0,005K + 0,97A

МVi1B – 2B + Vдет hад ад М = МVq3 + Мк Ki2K – 3K + Vi3В – 4В М

М – молярная масса воздуха.

Мк – молярная масса кислорода.

Принимаем V = 1 моль

К + А = 1

К = 1 – А

0,79 = 0,005(1 – А) + 0,97А

А = 0,813

К = 1 – 0,813 = 0,187

Определяем теоретическую производительнсть компрессора.

(1/0,187) = х/320 = х = 320/0,187 = 1711 м3 /ч = 2207,5 кг/ч

4. Расчёт узловых точек установки

Принимаем:

Давление воздуха на входе в компрессор……………………….

Давление воздуха на выходе из компрессора……………………Рвых к = 4,5 МПА

Температура воздуха на входе в компрессор…..………………...

Температура воздуха на выходе из компрессора…….…………..

Температура воздуха на выходе из теплообменника – ожижителя…..

Температура воздуха на выходе из блока очистки…………………

Давление в верхней колонне……………………………………..

Давление в нижней колонне………………………………………

Концентрация азота в кубовой жидкости ………………………..

Концентрация азота в азотной флегме……………………………

Температурный перепад азотной флегмы и кубовой жидкости при прохождении

через переохладитель…………..……………………………..

Температура кубовой жидкости…………………………………….

Температура азотной флегмы………………………………………

Температура отходящего азота…………………………………….

Температура жидкого кислорода…………………………………..

Разность температур на тёплом конце теплообменника – ожижителя………………………………………..…………….

Температура азота на выходе из установки………………….

Температурный перепад кислорода …………………………Т1К – 2К = 10 К

На начальной стадии расчёта принимаем:

Составляем балансы теплообменных аппаратов:

а) Баланс теплообменника – ожижителя.

КСр к Т4К – 5К + АСр А Т3А – 4А = VCp v T2В – 3В

б) Балансы переохладителя:

находим из номограммы для смеси азот – кислород.

в) Баланс переохладителя кислорода.

КCp K T1К – 2К = RCp R T2R – 3R

Принимаем T1К – 2К = 10 К

T2R – 3R = 0,128*1,686*10/6,621*1,448 = 2,4

Т3R = Т2 R + T2R – 3R = 74 + 2,4 = 76,4 К

i3R = 998,2

г) Баланс основного теплообменнка.

Для определения параметров в точках 3А и 4К разобьём основной теплообменник на 2 трёхпоточных теплообменника:

Истинное значение Vдет вычислим из баланса установки:

Vдет = [VMq3 + KMk i2K – 3K + VMi4B – 3B – VMi1B – 2B ]/Mhад ад = [1*29*8 + 0,187*32*(352,8 – 349,9) + 1*29*(522,32 – 516,8) – 1*29*(563,82 – 553,75)]/29*(394,5 – 367,5)*0,7 = 0,2

Vдет = 0,2V = 0,2*1711 = 342 м3

Составляем балансы этих теплообменников:

I VCpV T4B – 6B = KCpK T3K’ – 4K + ACpA T2A’ – 3A

II (V – Vд )CpV T6B-5B = KCpK T3K – 3K’ + ACpA T2A’ – 2A

Добавим к ним баланс теплообменника – ожижителя. Получим систему из 3 уравнений.

III КСр к Т4К – 5К + АСр А Т3А – 4А = VCp v T2В – 3В

Вычтем уравнение II из уравнения I:

VCpV T4B – 6B - (V – Vд )CpV T6B-5B = KCpK T3K’ – 4K - KCpK T3K – 3K’ + ACpA T2A’ – 3A - ACpA T2A’ – 2A

Получаем систему из двух уравнений:

I VCpV (T4B - 2T6B + T5B ) + Vд CpV (T6B – T5B ) = KCpK (T4K – T3K ) + ACpA T3A – 2A

II КСр к Т4К – 5К + АСр А Т3А – 4А = VCp v T2В – 3В

I 1*1,012(280 – 2*173 + 138) + 0,387*1,093(173 – 138) = 0,128*1,831(T4K – 88) +0,872*1,048(T –85)

II 1*1,012*(310 – 275) = 0,128*1,093(295 - T4K ) + 0,872*1,041(295 – T )

T4K = 248,4 К

T = 197,7 К

Для удобства расчёта полученные данные по давлениям, температурам и энтальпиям в узловых точках сведём в таблицу:

5

1R

2R

3R

i, кДж/

кг

553,7

563,8

516,8

522,3

319,2

319,2

419,1

367,5

1350

1131,2

1243

Р, МПа

0,1

4,5

4,5

4,5

4,5

0,65

4,5

4,5

0,65

0,65

0,65

Т, К

300

310

275

280

138

80

188

125

79

74

76,4

1D

2D

i, кДж/

кг

1015

2465

354,3

349,9

352,8

467,9

519,5

328,3

333,5

454,6

553,

Р, МПа

0,65

0,65

0,13

0,12

10

10

10

0,13

0,13

0,13

0,13

Т, К

79

74

93

84

88

248,4

295

80

85

197,7

295

ПРИМЕЧАНИЕ.

1. Значения энтальпий для точек 1R, 2R, 3R , 1D, 2D взяты из номограммы Т – i – P – x – y для смеси азот – кислород.

2. Прочие значения энтальпий взяты из [2].

5. Расчёт основного теплообменника.

Ввиду сложности конструкции теплообменного аппарата разобьём его на 4 двухпоточных теплообменника.

Истинное значение Vдет вычислим из баланса установки:

Vдет = [VMq3 + KMk i2K – 3K + VMi4B – 3B – VMi1B – 2B ]/Mhад ад = [1*29*8 + 0,128*32*(352,8 – 349,9) + 1*29*(522,32 – 516,8) – 1*29*(563,82 – 553,75)]/29*(394,5 – 367,5)*0,7 = 0,2

Vдет = 0,2V = 0,2* = 342,2 м3

Составляем балансы каждого из четырёх теплообменников:

I VA (i4B – i1 ) + Vq3 = A(i3A – i3 )

II VK (i4B – i2 ) + Vq3 = K(i4K – i4 )

III (VA – Vда )(i1 – i5B ) + Vq3 = A(i3 – i2A )

IV (VК – Vдк )(i2 – i5B ) + Vq3 = К(i4 – i )

Здесь VA + VК = V , Vда + Vдк = Vд

Параметры в точках i1 и i2 будут теми же, что в точке 6В

Температуру в точке 5В задаём:

Т = 138 К

Р = 4,5 МПа

i = 319,22 кДж/кг = 9257,38 кДж/кмоль

Принимаем VA = А = 0,813, VК = К = 0,187, Vдк = Vда = 0,1, q3 = 1 кДж/кг для всех аппаратов.

Тогда из уравнения I

VA (i4B – i ) + Vq3 = A(i3A – i3 )

0,813(522,32 – 419,1) + 1 = 0,813(454,6 – i3 )

i3 = (394,6 – 112,5)/0,813 = 324,7 кДж/кг

Т3 = 140 К

Проверяем полученное значение i3 с помощью уравнения III:

(0,872 – 0,1)(394,5 – 319,22) + 1 = 0,872(i3 – 333,5)

59,1 = 0,872i3 – 290,8

i3 = (290,8 + 59,1)/0,872 = 401,3 кДж/кг

Уменьшим VА до 0,54:

0,54(522,32 – 419,1) + 1 = 0,872(454,6 – i3 )

i3 = (394,6 – 70,023)/0,872 = 372,2 кДж/кг

Проверяем полученное значение i3 с помощью уравнения III:

(0,54 – 0,1)(394,5 – 319,22) + 1 = 0,872(i3 – 333,5)

i3 = (290,8 + 34,123)/0,872 = 372,6 кДж/кг

Т3 = 123 К

Тогда из уравнения II:

VK (i4B – i ) + Vq3 = K(i4K – i4 )

0,56(522,32 – 419,1) + 1 = 0,128(467,9 – i4 )

72,6 = 59,9 – 0,128 i4

i4 = (72,6 – 59,9)/0,128 = 332 кДж/кг

Т4 = 140 К

Рассчитываем среднеинтегральную разность температур для каждого из четырёх теплообменников.

а) Материальный баланс теплообменника I:

VA (i4B – i1 ) + Vq3 = A(i3A – i3 )

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

0,54*1,15(280 – 173) + 1*q3 = 0,872*1,99(197,7 – 123)

q3 = 121,9 - 66,4 = 55,5 кДж/кг

Рассчитываем коэффициенты В и D:

VA (i4B – i ) + Vq3 = A(i3A – i3 )

VA iB + Vq3 = A iA

iB = A iA / VA - V q3 /VA | iA / iA

iB = A iA / VA - Vq3 * iA / iA

В = A/VA = 0,872/0,54 = 1,645

D = V q3 /VA iA = 1*55,5/0,54*(197,7 – 123) = 0,376

iB = В iA - D iA = С iA = (1,635 – 0,376) iA = 1,259 iA

Составляем таблицу:

ТВ , К

iв , кДж/кг

iВ

ТА , К

iА , кДж/кг

iА

0 – 0

280

522,32

0

197,7

454,6

0

1 – 1

272

512,0

10,324

190,23

-

8,2

2 – 2

261

501,7

20,648

182,76

-

16,4

3 – 3

254

491,3

30,971

175,29

-

24,6

4 – 4

245

481,0

41,295

167,82

-

32,8

5 – 5

235

470,7

51,619

160,35

-

41

6 – 6

225

460,4

61,943

152,88

-

49,2

7 – 7

218

450,1

72,267

145,41

-

57,4

8 – 8

210

439,73

82,59

137,94

-

65,6

9 – 9

199

429,4

92,914

130,47

-

73,8

10 – 10

188

419,12

103,2

123

372,6

82


Строим температурные кривые:

Тср инт = n/(1/Тср )

Тср

1/Тср

1

82

0,012

2

82

0,012

3

78

0,0128

4

79

0,0127

5

77

0,013

6

72

0,0139

7

73

0,0137

8

72

0,0139

9

69

0,0145

10

65

0,0154

(1/Тср ) = 0,1339

Тср = 10/0,1339 = 54,7 К

б) Материальный баланс теплообменника II:

VK (i4B – i ) + Vq3 = K(i4K – i4 )

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

0,56*1,15(280 – 173) + 1*q3 = 0,187*1,684(248,4 – 140)

q3 = 23,4 - 68,9 = -45,5 кДж/кг

Рассчитываем коэффициенты В и D:

VК (i4B – i ) + Vq3 = K(i4K – i4 )

VК iB + Vq3 = К iК

iB = К iК / VК - V q3 /VК | iК / iК

iB = К iК / VК - Vq3 * iК / iК

В = К/VК = 0,128/0,56 = 0,029

D = V q3 /VК iК = -1*45,5/0,56*(248,4 – 140) = -0,75

iB = В iК - D iК = С iК = (0,029 + 0,75) iК = 0,779 iК

Составляем таблицу:

ТВ , К

iв , кДж/кг

iВ

ТК , К

iК , кДж/кг

iК

0 – 0

280

522,32

0

248,4

332

0

1 – 1

272

511,7

10,589

237,56

-

13,593

2 – 2

261

501,1

21,178

226,72

-

27,186

3 – 3

254

490,6

31,767

215,88

-

40,779

4 – 4

245

480

42,356

205,04

-

54,372

5 – 5

235

469,3

52,973

194,2

-

67,975

6 – 6

225

458.8

63,534

183,36

-

81,558

7 – 7

218

448,2

74,123

172,52

-

95,151

8 – 8

210

437,6

84,735

161,68

-

108,77

9 – 9

199

427

95,301

150,84

-

122,33

10 – 10

188

419,12

105,9

140

467,93

135,93


Тср инт = n/(1/Тср )

Тср

1/Тср

1

32

0,03125

2

34

0,0294

3

34

0,0294

4

40

0,025

5

41

0,0244

6

42

0,0238

7

45

0,0222

8

48

0,0208

9

48

0,0208

10

48

0,0208

(1/Тср ) = 0,245

Тср = 10/0,245 = 40,3 К

в) Материальный баланс теплообменника III:

(VA – Vда )(i – i5B ) + Vq3 = A(i3 – i2A )

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

(0,54 – 0,1)*2,204(188 - 138) + 1*q3 = 0,813*1,684(123 – 85)

q3 = 55,8 – 33,9 = 21,9 кДж/кг

Рассчитываем коэффициенты В и D:

(VA – Vда )(i – i5B ) + Vq3 = A(i3 – i2A )

(VА - Vда ) iB + Vq3 = А iА

iB = А iА / (VА - Vда ) - V q3 /VА | iА / iА

iB = А iА / (VА - Vда ) - Vq3 * iА / iА

В =А/(VА - Vда ) = 0,813/0,44 = 1,982

D = V q3 /(VА - Vда ) iА = 1*21,9/0,44*(372,6 – 333,5) = 0,057

iB = В iА - D iА = С iА = (1,982 – 0,057) iА = 1,925 iА

Составляем таблицу:

ТВ , К

iв , кДж/кг

iВ

ТА , К

iА , кДж/кг

iА

0 – 0

188

394,5

0

123

372,6

0

1 – 1

175

387

7,527

119,2

-

3,91

2 – 2

168

379,4

15,1

115,4

-

7,82

3 – 3

162

371,92

22,58

111,6

-

11,73

4 – 4

158

364,4

30,1

107,8

-

15,64

5 – 5

155

356,9

37,6

104

-

19,55

6 – 6

152

349,3

45,2

100,2

-

23,46

7 – 7

149

341,8

52,7

96,4

-

27,37

8 – 8

145

334,3

60,2

92,6

-

31,28

9 – 9

141

326,8

67,741

88,8

-

35,19

10 – 10

138

319,22

75,28

85

333,5

39,1


Тср инт = n/(1/Тср )

Тср

1/Тср

1

56

0,0179

2

53

0,0189

3

50

0,02

4

50

0,02

5

51

0,0196

6

52

0,0192

7

53

0,0189

8

52

0,0192

9

52

0,0192

10

53

0,0189

(1/Тср ) = 0,192

Тср = 10/0,245 = 52 К

г) Материальный баланс теплообменника IV:

(VК – Vдк )(i – i5B ) + Vq3 = К(i4 – i )

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

(0,56 – 0,1)*2,204(188 - 138) + 1*q3 = 0,128*1,742(123 – 88)

q3 = 7,804 - 50,7 = - 42,9 кДж/кг

Рассчитываем коэффициенты В и D:

(VК – Vдк )(i – i5B ) + Vq3 = К(i4 – i )

(Vк - Vдк ) iB + Vq3 = К iк

iB = К iк / (VК - Vдк ) - V q3 /VК | iК / iК

iB = К iК / (VК - Vдк ) - Vq3 * iК / iК

В =К/(VК - Vдк ) = 0,128/0,46 = 0,278

D = V q3 /(VК - Vдк ) iк = -1*42,9/0,46*(372,6 – 332) = - 1,297

iB = В iК - D iК = С iк = (0,278 + 1,297) iК = 1,488 iК

Составляем таблицу:

ТВ , К

iв , кДж/кг

iВ

ТК , К

iК , кДж/кг

iК

0 – 0

188

394,5

0

140

332

0

1 – 1

174

387,17

7,33

134,8

-

5,06

2 – 2

167

379,8

14,7

129,6

-

10,12

3 – 3

162

371,6

22,9

124,4

-

15,18

4 – 4

158

365,2

29,3

119,2

-

20,24

5 – 5

155

357,9

36,6

114

-

25,3

6 – 6

152

350,5

44

108,8

-

30,36

7 – 7

149

343,2

51,3

103,6

-

35,42

8 – 8

146

335,9

58,6

98,4

-

40,48

9 – 9

143

328,6

65,9

93,2

-

45,54

10 – 10

138

319,22

75,28

88

372,6

50,6

Тср инт = n/(1/Тср )

Тср

1/Тср

1

40

0,025

2

37

0,027

3

38

0,026

4

39

0,0256

5

41

0,0244

6

43

0,0233

7

45

0,0222

8

47

0,0213

9

50

0,02

10

50

0,02


(1/Тср ) = 0,235

Тср = 10/0,245 = 42,6 К

д) Расчёт основного теплообменника.

Для расчёта теплообменника разбиваем его на 2 трёхпоточных. Для удобства расчёта исходные данные сводим в таблицу.

Поток

Рср , ат.

Тср , К

Ср , кДж/кгК

Уд. Объём v, м3 /кг

, кг*с/м2

*107

, Вт/мК, *103

Прямой

(воздух)

45

226,5

1,187

0,005

18,8

23,6

Обратный

2 под дав)

100

190

2,4

0,00106

108

15

Обратный

(N2 низ дав)

1,3

155

1,047

0,286

9,75

35,04

Прямой поток.

1)Скорость потока принимаем = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 1711*0,005/3600 = 2,43*10-3 м3

3) Выбираем тубку ф 12х1,5 мм

4) Число трубок

n = Vсек /0,785dвн = 0,00243/0,785*0,0092 *1 = 39 шт

Эквивалентный диаметр

dэкв = 9 – 5 = 4 мм

5) Критерий Рейнольдса

Re = dвн /g = 1*0,004*85,4/9,81*18,8*10-7 = 32413

6) Критерий Прандтля

Pr = 0,802 (см. [2])

7) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,33 = 0,015*324130,8 *0,8020,33 = 63,5

8) Коэффициент теплоотдачи:

В = Nu/dвн = 63,5*23,6*10-3 /0,007 = 214,1 Вт/м2 К

Обратный поток (кислород под давлением):

1)Скорость потока принимаем = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 320*0,0011/3600 = 9,8*10-5 м3

3) Выбираем тубку ф 5х0,5 мм гладкую.

4) Критерий Рейнольдса

Re = dвн /g = 1*0,007*330,1/9,81*106*10-7 = 21810

5) Критерий Прандтля

Pr = 1,521 (см. [2])

6) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,4 = 0,015*218100,8 *1,5210,33 = 80,3

7) Коэффициент теплоотдачи:

В = Nu/dвн = 80,3*15*10-3 /0,007 = 172 Вт/м2 К

Обратный поток (азот низкого давления)

1)Скорость потока принимаем = 15 м/с

2) Секундный расход

Vсек = V*v/3600 = 1391*0,286/3600 = 0,11 м3

3) Живое сечение для прохода обратного потока:

Fж = Vсек / = 0,11/15 = 0,0074 м2

4) Диаметр сердечника принимаем Dc = 0,1 м

4) Критерий Рейнольдса

Re = dвн /g = 15*0,004*2,188/9,81*9,75*10-7 = 34313

5) Критерий Нуссельта:

Nu = 0,0418 Re0,85 = 0,0418*343130,85 =299,4

7) Коэффициент теплоотдачи:

В = Nu/dвн = 299,4*35,04*10-3 /0,01 = 1049 Вт/м2 К

Параметры всего аппарата:

1) Тепловая нагрузка азотной секции

QA = AiA /3600 = 1391*(454,6 – 381,33)/3600 = 28,3 кВт

2) Среднеинтегральная разность температур Тср = 54,7 К

3) Коэффициент теплопередачи

КА = 1/[(1/в )*(Dн /Dвн ) + (1/А )] = 1/[(1/214,1)*(0,012/0,009) + (1/1049)] = 131,1 Вт/м2 К

4) Площадь теплопередающей поверхности

FA = QA /KA Тср = 28300/131,1*54,7 = 3,95 м2

5) Средняя длина трубки с 20% запасом

lА = 1,2FA /3,14DH n = 1,2*3,95/3,14*0,012*32 = 3,93 м

6) Тепловая нагрузка кислородной секции

QК = КiA /3600 = 0,183*(467,93 – 332)/3600 = 15,1 кВт

7) Коэффициент теплопередачи

КК = 1/[(1/в ) + (1/К ) *(Dн /Dвн )] = 1/[(1/214,1) + (1/172) *(0,01/0,007)]=77 Вт/м2 К

8) Площадь теплопередающей поверхности

FК = QК /KК Тср = 15100/77*25 = 7,8 м2

9) Средняя длина трубки с 20% запасом

lК = 1,2FК /3,14DH n = 1,2*7,8/3,14*0,01*55 = 5,42 м

Принимаем l = 5,42 м.

10) Теоретическая высота навивки.

Н = lt2 /Dср = 17*0,0122/3,14*0,286 = 0,43 м.

Второй теплообменник.

Поток

Рср , ат.

Тср , К

Ср , кДж/кгК

Уд. Объём v, м3 /кг

, кг*с/м2

*107

, Вт/мК, *103

Прямой

(воздух)

45

155,5

2,328

0,007

142,62

23,73

Обратный

2 под дав)

100

132,5

1,831

0,00104

943,3

106,8

Обратный

(N2 низ дав)

1,3

112,5

1,061

0,32

75,25

10,9

Прямой поток.

1)Скорость потока принимаем = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 1875*0,007/3600 = 2,6*10-3 м3

3) Выбираем тубку ф 10х1,5 мм гладкую.

4) Число трубок

n = Vсек /0,785dвн = 0,0026/0,785*0,0072 *1 = 45 шт

Эквивалентный диаметр

dэкв = 9 – 5 = 4 мм

5) Критерий Рейнольдса

Re = dвн /g = 1*0,004*169,4/9,81*142,62*10-7 = 83140

6) Критерий Прандтля

Pr =1,392 (см. [2])

7) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,33 = 0,015*831400,8 *1,3920,33 = 145

8) Коэффициент теплоотдачи:

В = Nu/dвн = 145*10,9*10-3 /0,007 = 225,8 Вт/м2 К

Обратный поток (кислород под давлением):

1)Скорость потока принимаем = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 800*0,00104/3600 = 1,2*10-4 м3

3) Выбираем тубку ф 10х1,5 мм с оребрением из проволоки ф 1,6 мм и шагом оребрения tп = 5,5мм

4) Критерий Рейнольдса

Re = dвн /g = 1*0,007*1067,2/9,81*75,25*10-7 = 101200

5) Критерий Прандтля

Pr = 1,87 (см. [2])

6) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,4 = 0,015*1012000,8 *1,870,33 = 297,2

7) Коэффициент теплоотдачи:

В = Nu/dвн = 297,2*10,9*10-3 /0,007 = 462,8 Вт/м2 К

Обратный поток (азот низкого давления)

1)Скорость потока принимаем = 15 м/с

2) Секундный расход

Vсек = V*v/3600 = 2725*0,32/3600 = 0,242 м3

3) Живое сечение для прохода обратного потока:

Fж = Vсек / = 0,242/15 = 0,016 м2

4) Диаметр сердечника принимаем Dc = 0,1 м

4) Критерий Рейнольдса

Re = dвн /g = 15*0,01*3,04/9,81*75,25*10-7 = 60598

5) Критерий Нуссельта:

Nu = 0,0418 Re0,85 = 0,0418*605980,85 =485,6

7) Коэффициент теплоотдачи:

В = Nu/dвн = 485,6*10,9*10-3 /0,01 = 529,3 Вт/м2 К

Параметры всего аппарата:

1) Тепловая нагрузка азотной секции

QA = AiA /3600 = 2725(391,85 – 333,5)/3600 = 57 кВт

2) Среднеинтегральная разность температур Тср = 52 К

3) Коэффициент теплопередачи

КА = 1/[(1/в )*(Dн /Dвн ) + (1/А )] = 1/[(1/225,8)*(0,01/0,007) + (1/529,3)] = 121,7 Вт/м2 К

4) Площадь теплопередающей поверхности

FA = QA /KA Тср = 57000/121,7*52 = 9 м2

5) Средняя длина трубки с 20% запасом

lА = 1,2FA /3,14DH n = 1,2*9/3,14*0,01*45 = 7,717 м

6) Тепловая нагрузка кислородной секции

QК = КiК /3600 = 0,128*(352,8 - 332)/3600 = 4,6 кВт

7) Коэффициент теплопередачи

КК = 1/[(1/в ) + (1/К ) *(Dн /Dвн )] = 1/[(1/225,8) + (1/529,3) *(0,01/0,007)] = 140,3 Вт/м2 К

8) Площадь теплопередающей поверхности

FК = QК /KК Тср = 4600/140*42,6 = 0,77 м2

9) Средняя длина трубки с 20% запасом

lК = 1,2FК /3,14DH n = 1,2*0,77/3,14*0,01*45 = 0,654 м

Принимаем l = 7,717 м.

10) Теоретическая высота навивки.

Н = lt2 /Dср = 7,717*0,0122/3,14*0,286 = 0,33 м.

Окончательный вариант расчёта принимаем на ЭВМ.

6. Расчёт блока очистки.

1) Исходные данные:

Количество очищаемого воздуха …………………… V = 2207,5 кг/ч = 1711 м3

Давление потока …………………………………………… Р = 4,5 МПа

Температура очищаемого воздуха………………………… Т = 275 К

Расчётное содержание углекислого газа по объёму …………………...С = 0,03%

Адсорбент ……………………………………………………NaX

Диаметр зёрен ………………………………………………. dз = 4 мм

Насыпной вес цеолита ………………………………………ц = 700 кг/м3

Динамическая ёмкость цеолита по парам СО2 ……………ад = 0,013 м3 /кг

Принимаем в качестве адсорберов стандартный баллон диаметром Da = 460 мм и высоту слоя засыпки адсорбента

L = 1300 мм.

2) Скорость очищаемого воздуха в адсорбере:

= 4Va /nDa 2

n – количество одновременно работающих адсорберов;

Vа – расход очищаемого воздуха при условиях адсорбции, т. е. при Р = 4,5 МПа и Тв = 275 К:

Va = VTB P/T*PB = 1711*275*1/273*45 = 69,9 кг/ч

= 4*69,9/3*3,14*0,462 = 140,3 кг/ч*м2

Определяем вес цеолита, находящегося в адсорбере:

Gц = nVад ц = L**n**Da 2 /4 = 1*3,14*0,462 *1,3*700/4 = 453,4 кг

Определяем количество СО2 , которое способен поглотить цеолит:

VCO 2 = Gц *aд = 453,4*0,013 = 5,894 м3

Определяем количество СО2 , поступающее каждый час в адсорбер:

VCO2 = V*Co = 3125*0,0003 = 0,937 м3

Время защитного действия адсорбента:

пр = VCO 2 / VCO 2 = 5,894/0,937 = 6,29 ч

Увеличим число адсорберов до n = 4. Тогда:

= 4*69,9/4*3,14*0,462 = 105,2 кг/ч*м2

Gц = 4*3,14*0,462 *1,3*700/4 = 604,6 кг

VCO 2 = Gc *aд = 604,6*0,013 = 7,86 м3

пр = 7,86/0,937 = 8,388 ч.

Выбираем расчётное время защитного действия пр = 6 ч. с учётом запаса времени.

2) Ориентировочное количество азота для регенерации блока адсорберов:

Vрег = 1,2*GH 2 O /x рег

GH 2 O – количество влаги, поглощённой адсорбентом к моменту регенерации

GH 2 O = Gц аН2О = 604,2*0,2 = 120,84 кг

рег – время регенерации, принимаем

рег = 0,5 пр = 3 ч.

х – влагосодержание азота при Тср.вых и Р = 105 Па:

Тср.вых = (Твых.1 + Твых.2 )/2 = (275 + 623)/2 = 449 К

х = 240 г/м3

Vрег = 1,2*120,84/0,24*3 = 201,4 м3

Проверяем количество регенерирующего газа по тепловому балансу:

Vрег *N 2 *CpN 2 *(Твх + Твых. ср )* рег = Q

Q = Q1 + Q2 + Q3 + Q4 + Q5

Q1 – количество тепла, затраченное на нагрев металла;

Q2 – количество тепла, затраченное на нагрев адсорбента,

Q3 – количество тепла, необходимое для десорбции влаги, поглощённой адсорбентом;

Q4 – количество тепла, необходимое для нагрева изоляции;

Q5 – потери тепла в окружающую среду.

Q1 = Gм Смср – Tнач )

Gм – вес двух баллонов с коммуникациями;

См – теплоёмкость металла, См = 0,503 кДж/кгК

Tнач – температура металла в начале регенерации, Tнач = 280 К

Тср – средняя температура металла в конце процесса регенерации,

Тср = (Твх + Твых )/2 = (673 + 623)/2 = 648 К

Твх – температура азота на входе в блок очистки, Твх = 673 К;

Твых – температура азота на выходе из блока очистки, Твх = 623 К;

Для определения веса блока очистки определяем массу одного баллона, который имеет следующие геометрические размеры:

наружний диаметр ……………………………………………….Dн = 510 мм,

внутренний диаметр ……………………………………………..Dвн = 460 мм,

высота общая ……………………………………………………..Н = 1500 мм,

высота цилиндрической части …………………………………..Нц = 1245 мм.

Тогда вес цилиндрической части баллона

GM = (Dн 2 – Dвн 2ц *м */4 = (0,512 – 0,462 )*1,245*7,85*103 *3,14/4 = 372,1 кг,

где м – удельный вес металла, м = 7,85*103 кг/м3 .

Вес полусферического днища

GM ’’ = [(Dн 3 /2) – (Dвн 3 /2)]* м *4/6 = [(0,513 /2) – (0,463 /2)]*7,85*103 *4*3,14/6 = 7,2 кг

Вес баллона:

GM + GM ’’ = 382 + 7,2 = 389,2 кг

Вес крышки с коммуникациями принимаем 20% от веса баллона:

GM ’’’ = 389,2*0,2 = 77,84 кг

Вес четырёх баллонов с коммуникацией:

GM = 4(GM + GM ’’ + GM ’’’ ) = 4*(382 + 7,2 + 77,84) = 1868 кг.

Тогда:

Q1 = 1868*0,503*(648 – 275) = 3,51*105 кДж

Количество тепла, затрачиваемое на нагревание адсорбента:

Q2 = Gц Сцср ’ – Tнач ’ ) = 604,6*0,21*(648 – 275) = 47358 кДж

Количество тепла, затрачиваемое на десорбцию влаги:

Q3 = GH 2 O Cpкип – Тнач ’ ) + GH 2 O * = 120,84*1*(373 – 275) + 120,84*2258,2 = 2,8*105 кДж

– теплота десорбции, равная теплоте парообразования воды; Ср – теплоёмкость воды.

Количество тепла, затрачиваемое на нагрез изоляции:

Q4 = 0,2Vиз из Сизиз – Тнач ) = 0,2*8,919*100*1,886*(523 – 275) = 8,3*104 кДж

Vиз = Vб – 4Vбалл = 1,92*2,1*2,22 – 4*0,20785*0,512 *0,15 = 8,919 м3 – объём изоляции.

из – объёмный вес шлаковой ваты, из = 100 кг/м3

Сиз – средняя теплоёмкость шлаковой ваты, Сиз = 1,886 кДж/кгК

Потери тепла в окружающую среду составляют 20% от Q = Q1 + Q2 + Q4 :

Q5 = 0,2*(3,51*105 + 47358 + 8,3*104 ) = 9.63*104 кДж

Определяем количество регенерирующего газа:

Vрег = (Q1 + Q2 + Q3 + Q4 + Q5 )/ N 2 *CpN 2 *(Твх + Твых. ср )* рег =

=(3,51*105 + 47358 + 2,8*105 + 8,3*104 + 9,63*104 )/(1,251*1,048*(673 – 463)*3) = 1038 нм3

Проверяем скорость регенерирующего газа, отнесённую к 293 К:

рег = 4 Vрег *293/600**Da 2 *n*Tнач = 4*1038*293/600*3,14*0,462 *2*275 = 5,546 м/с

n – количество одновременно регенерируемых адсорберов, n = 2

Определяем гидравлическое сопротивление слоя адсорбента при регенерации.

Р = 2fL2 /9,8dэ х2

где Р – потери давления, Па;

f – коэффициент сопротивления;

– плотность газа, кг/м3 ;

L – длина слоя сорбента, м;

dэ – эквивалентный диаметр каналов между зёрнами, м;

– скорость газа по всему сечению адсорбера в рабочих условиях, м/с;

– пористость слоя адсорбента, = 0,35 м23 .

Скорость регенерирующего газа при рабочих условиях:

= 4*Vрегвых.ср. /3600**Da 2 *n*Тнач = 4*1038*463/3600*3,14*0,462 *2*275 = 1,5 м/с

Эквивалентный диаметр каналов между зёрнами:

dэ = 4**dз /6*(1 – ) = 4*0,35*4/6*(1 – 0,35) = 1,44 мм.

Для определения коэффициента сопротивления находим численное значение критерия Рейнольдса:

Re = *dэ */**g = 1,5*0,00144*0,79*107 /0,35*25*9,81 = 198,8

где – динамическая вязкость, = 25*10-7 Па*с;

– удельный вес азота при условиях регенерации,

= 0 *Р*Т00вых.ср = 1,251*1,1*273/1,033*463 = 0,79 кг/м3

По графику в работе [6] по значению критерия Рейнольдса определяем коэффициент сопротивления f = 2,2

Тогда:

Р = 2*2,2*0,79*1,3*1,52 /9,81*0,00144*0,352 = 587,5 Па

Определяем мощность электроподогревателя:

N = 1,3* Vрег **Ср *(Твх – Тнач )/860 = 1,3*1038*1,251*0,25(673 – 293)/860 = 70,3 кВт

где Ср = 0,25 ккал/кг*К

7. Определение общих энергетических затрат установки

l = [Vв RToc ln(Pk /Pn )]/из Кж *3600 = 1711*0,287*296,6*ln(4,5/0,1)/0,6*320*3600 = 0,802 кВт

где V – полное количество перерабатываемого воздуха, V = 2207,5 кг/ч = 1711 м3

в – плотность воздуха при нормальных условиях, в = 1,29 кг/м3

R – газовая постоянная для воздуха, R = 0,287 кДж/кгК

из – изотермический КПД, из = 0,6

Кж – количество получаемого кислорода, К = 320 м3

Тос – температура окружающей среды, принимается равной средне – годовой температуре в городе Владивостоке, Тос = 23,60 С = 296,6 К

8. Расчёт процесса ректификации.

Расчёт процесса ректификации производим на ЭВМ (см. распечатки 4 и 5).

Вначале проводим расчёт нижней колонны. Исходные данные вводим в виде массива. Седьмая

строка массива несёт в себе информацию о входящем в колонну потоке воздуха: принимаем, что в нижнюю часть нижней колонны мы вводим жидкий воздух.

1 – фазовое состояние потока, жидкость;

0,81 – эффективность цикла. Поскольку в установке для ожижения используется цикл Гейландта (х = 0,19), то эффективность установки равна 1 – х = 0,81.

0,7812 – содержание азота в воздухе;

0,0093 – содержание аргона в воздухе;

0,2095 – содержание кислорода в воздухе.

Нагрузку конденсатора подбираем таким образом, чтобы нагрузка испарителя стремилась к нулю.

8. Расчёт конденсатора – испарителя.

Расчёт конденсатора – испарителя также проводим на ЭВМ с помощью программы, разработанной Е. И. Борзенко.

В результате расчёта получены следующие данные (смотри распечатку 6):

Коэффициент телоотдачи в испарителе……….……….ALFA1 = 1130,7 кДж/кгК

Коэффициент телоотдачи в конденсаторе…………… ALFA2 = 2135,2 кДж/кгК

Площадь теплопередающей поверхности………………..………F1 = 63,5 м3

Давление в верхней колонне ………………………………………Р1 = 0,17 МПа.

10. Подбор оборудования.

1. Выбор компрессора.

Выбираем 2 компрессора 605ВП16/70.

Производительность одного компрессора ………………………………..16±5% м3 /мин

Давление всасывания……………………………………………………….0,1 МПа

Давление нагнетания………………………………………………………..7 МПа

Потребляемая мощность…………………………………………………….192 кВт

Установленная мощность электродвигателя………………………………200 кВт

2. Выбор детандера.

Выбираем ДТ – 0,3/4 .

Характеристики детандера:

Производительность…………………………………………………… V = 340 м3

Давление на входе ………………………………………………………Рвх = 4 МПа

Давление на выходе …………………………………………………….Рвых = 0.6 МПа

Температура на входе …………………………………………………..Твх = 188 К

Адиабатный КПД ……………………………………………………….ад = 0,7

3. Выбор блока очистки.

Выбираем стандартный цеолитовый блок осушки и очистки воздуха ЦБ – 2400/64.

Характеристика аппарата:

Объёмный расход воздуха ……………………………….V=2400 м3

Рабочее давление:

максимальное ……………………………………………Рмакс = 6,4 МПа

минимальное………………………………………..……Рмин = 3,5 МПа

Размеры сосудов…………………………………………750х4200 мм.

Количество сосудов……………………………………..2 шт.

Масса цеолита …………………………………………..М = 2060 кг

Список используемой литературы :

1. Акулов Л.А., Холодковский С.В. Методические указания к курсовому проектированию криогенных установок по курсам «Криогенные установки и системы» и «Установки сжижения и разделения газовых смесей» для студентов специальности 1603. – СПб.; СПбТИХП, 1994. – 32 с.

2. Акулов Л.А., Борзенко Е.И., Новотельнов В.Н., Зайцев А.В.Теплофизические свойства криопродуктов. Учебное пособие для ВУЗов. – СПб.: Политехника, 2001. – 243 с.

3. Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 1., - М.: Машиностроение, 1998. – 464 с.

4. Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 2., - М.: Машиностроение, 1999. – 720 с.

5. Акулов Л.А., Холодковский С.В. Криогенные установки (атлас технологических схем криогенных установок): Учебное пособие. – СПб.: СПбГАХПТ, 1995. – 65 с.

6. Кислород. Справочник в двух частях. Под ред. Д. Л. Глизманенко. М., «Металлургия», 1967.

Распечатка 1. Расчёт основного теплообменника.

Распечатка 2. Расчёт теплообменника – ожижителя.

Распечатка 3. Расчёт переохладителя.

Распечатка 4. Расчёт процесса ректификации в нижней колонне.

Распечатка 5. Расчёт процесса ректификации в верхней колонне.

Распечатка 6. Расчёт конденсатора – испарителя.

Распечатка 7. Расчёт переохладителя кислорода.

Скачать архив с текстом документа