Разработка системы управления двигателя постоянного тока

СОДЕРЖАНИЕ: Параметры и структура автоматизированного электропривода. Алгоритм управления и расчёт параметров устройств управления, их моделирование, а также определение и оценка показателей качества. Разработка принципиальной электрической схемы, выбор её элементов.

Содержание

Введение…………………………….…………………………………..................2

1. Определение параметров и структуры объекта управления.….…………….3

2. Разработка алгоритма управления и расчёт параметров устройств управления……………………………………………………………………...…7

3. Моделирование процессов управления, определение и оценка показателей качества…………………………………………………………………………..16

4. Разработка принципиальной электрической схемы и выбор её элементов.23

Список литературы.………………………………………….………………..…39


Введение

На современном этапе, характеризующемся приоритетным развитием машиностроения и автоматизации производства, автоматизированный электропривод сформировался как самостоятельное научное направление, в значительной степени определяющее прогресс в области техники и технологии, связанных с механическим движением, получаемым путем преобразования электрической энергии. Этим объясняется большой интерес специалистов к новым разработкам в данной отрасли техники и к ее научным проблемам.

Четко определился объект научного направления – система, отвечающая за управляемое электромеханическое преобразование энергии и включающая два взаимодействующих канала – силовой, состоящий из участка электрической сети, электрического, электромеханического, механического преобразователей, технологического рабочего органа, и информационный канал. В рамках данного курсового проекта рассматривается разработка информационного канала.


1. Определение параметров и структуры объекта управления

В состав объекта управления входит двигатель постоянного тока независимого возбуждения с параметрами по табл. 10.11 [1, стр. 277]:

- номинальная мощность,
- номинальное напряжение питания обмотки возбуждения и якорной цепи,
- КПД,
- номинальная частота вращения,
- максимальная частота вращения,
- сопротивление обмотки якоря,
- сопротивление добавочных полюсов,
- индуктивность обмотки якоря,
- сопротивление обмотки возбуждения,
- момент инерции якоря.
- число пар полюсов.
- коэффициент инерционности механизма.

Данный ЭД предназначен для работы в широкорегулируемых электроприводах, соответствует , имеет защищенное исполнение, с независимой вентиляцией (асинхронный двигатель ).

Номинальная угловая скорость вращения


Максимальная угловая скорость вращения:

Номинальный ток якоря:

Суммарное сопротивление якорной цепи:

Произведение постоянной машины на номинальный поток:

Постоянная времени якорной цепи:

Номинальный момент:

Номинальный ток обмотки возбуждения:


Исходя из высоты оси вращения по табл. 1 [2, стр. 5]:

По рис. 4 [2, стр. 10]:

По рис. 2б [2, стр. 8]:

По табл. 2 [2, стр. 9] для класса изоляции :

По табл. 3 [2, стр. 10] для :

Окончательно получим:

По рис. 3 [2, стр. 9]:

Полюсное деление равно:

Число витков обмотки возбуждения [2, стр. 27]:

Номинальный магнитный поток:

Постоянная машины:

Коэффициент рассеяния [3, стр. 38]:

Индуктивность обмотки возбуждения:

Постоянная времени обмотки возбуждения:

Постоянная времени обмотки возбуждения:

Суммарный момент инерции механизма:

Так же объёкт управления содержит возбуждения и напряжения якоря, частота коммутации которых:

Постоянная времени преобразователей равна:

Так как и представим преобразователи в виде пропорциональных звеньев, откуда с учетом диапазона стандартных управляющих сигналов () имеем и максимальной скважности () получим:

2. Разработка алгоритма управления и расчёт параметров устройств управления

Объект управления описывается следующими уравнениями [3, стр.38-39]:

Выберем двухконтурную систему управления скорости с внутренним контуром потока (рис. 1).

Рис. 1. Двухконтурная система регулирования скорости.


Универсальная кривая намагничивания представлена на рис. 3.

Так как регулирование происходит изменением потока, минимальный поток будет при максимальной скорости:

Минимальный ток возбуждения (по рис. 3):

Рис. 3. Универсальная кривая намагничивания.

При этом коэффициент линеаризации кривой намагничивания лежит в диапазоне:


Максимальная постоянная времени потока:

Коэффициент форсирования тока возбуждения [4, стр. 559]:

Малая постоянная времени:

Желаемая передаточная функция замкнутого контура потока:

Желаемая передаточная функция разомкнутого контура потока:

Передаточная функция разомкнутого контура потока:

Коэффициент обратной связи по потоку:


Передаточная функция регулятора потока:

где

Коэффициент подлежит определению непрерывно, для чего контур потока будет модифицирован (рис. 4.).

Рис. 4. Модифицированный контур регулирования потока.


Коэффициент обратной связи по скорости:

Коэффициент обратной связи ЭДС:

Коэффициент обратной связи по току возбуждения:

Коэффициент нормализации

С учётом этого:

Внешний контур скорости представлен на рис. 5.


Рис. 5. Контур регулирования скорости.

Желаемая передаточная функция разомкнутого контура скорости:

Передаточная функция разомкнутого контура скорости:

Передаточная функция регулятора скорости

где

Так как нагрузка с постоянной мощностью изменяет знак и коэффициент подлежит определению непрерывно контур скорости также будет модифицирован (рис. 6.).


Рис. 6. Модифицированный контур регулирования скорости.

Коэффициент обратной связи по току якоря:

Отсюда следует:

Передаточная функция контура компенсирующего влияние нагрузки:

Коэффициент задания мощности нагрузки:


Откуда (с учётом принятых выше коэффициентов) имеем:

где

Структура системы управления стабилизатором напряжения в цепи якоря приведена на рис. 7.

Рис. 7. Контур управления напряжением якоря.

Здесь:

Структурная схема всей системы управления и объекта приведена на рис. 8.


Рис. 8. Структурная схема системы управления и объекта.


3. Моделирование процессов управления, определение и оценка показателей качества

Модель объекта и системы управления в комплексе представлена на рис. 9.

Моделирование будем проводить по нижеследующему алгоритму:

Пуск на номинальную скорость -

максимальный скачёк задания -, (рис. 10 – рис. 14)

Проверка отработки задания

(рис. 15 – рис. 10)



Рис. 9. Модель объекта и систему управления.


Рис. 10. Зависимость от времени.

Рис. 11. Зависимость и от времени.


Рис. 12. Зависимость и от времени.

Рис. 13. Зависимость и от времени.


Рис. 14. Зависимость от времени.

Рис. 15. Зависимость от времени.


Рис. 16. Зависимость и от времени.

Рис. 17. Зависимость от времени.


Рис. 18. Зависимость и от времени.

Рис. 19. Зависимость от времени.

Для технического оптимума:

-перерегулирование составляет:

-время нарастания:

По результатам моделирования:

-перерегулирование составляет:

-время нарастания:

Статическая ошибка отсутствует.

Отсюда можно сделать вывод:

динамика и статика спроектированной системы полностью удовлетворяет требованиям технического задания.

4. Разработка принципиальной электрической схемы и выбор её элементов

Обратная связь по скорости.


Рис. 20. Обратная связь по скорости.

Схема обратной связи по скорости представлена на рис. 20, здесь:

-фильтр коллекторных пульсаций тахогенератора с :

- ,

-

-цепь защиты от обрыва обратной связи:

- с параметрами

- максимальный прямой ток,

- прямое напряжение,

- максимальное обратное напряжение,

- ёмкость диода,

- максимальная рабочая частота;

-тахогенератор встроенный в двигатель:


-коэффициент усиления схемы:

,

,

- ,

;

-усилительный элемент:

- с параметрами

- напряжение питания,

- максимальное выходное напряжение,

- входной ток,

- коэффициент нарастания напряжения,

- коэффициент усиления по напряжению,

- максимальная рабочая частота;

-фильтр пульсаций напряжения питания усилителя:

- ,

Обратная связь по току якоря.


Рис. 21. Обратная связь по току якоря.

Схема обратной связи по току якоря представлена на рис. 21, здесь:

-фильтр пульсаций с :

- ,

- ;

-датчик тока:

- с параметрами :

- номинальный входной ток,

- напряжение питания,

- сопротивление нагрузки,

- коэффициент датчика тока;

-коэффициент усиления схемы:

- ,

-,

-усилительный элемент: -;

-фильтр пульсаций напряжения питания усилителя: - .

Обратная связь по току возбуждения.

Рис. 22. Обратная связь по току возбуждения.

Схема обратной связи по току возбуждения представлена на рис. 22, здесь:

-фильтр пульсаций с :

- ,

- ;


-датчик тока:

- с параметрами

- номинальный входной ток,

- напряжение питания,

- сопротивление нагрузки,

- коэффициент датчика тока;

-коэффициент усиления схемы:

,

- ,

,

-усилительный элемент: -;

-фильтр пульсаций напряжения питания усилителя: - .

Обратная связь по ЭДС.


Рис. 23. Обратная связь по ЭДС.

Схема обратной связи по ЭДС представлена на рис. 23, здесь:

-фильтр пульсаций с :

- ,

- ;

-датчик напряжения:

- с параметрами :

- номинальный входной ток,

- напряжение питания,

- сопротивление нагрузки,

- коэффициент датчика напряжения;

-коэффициент усиления схемы:

- ,

-,

-,

-усилительный элемент: -;

-фильтр пульсаций напряжения питания усилителя: -

Обратная связь по потоку.


Рис. 24. Обратная связь по потоку.

Схема обратной связи по потоку представлена на рис. 24, здесь:

-коэффициент усиления схемы:

,

- ,

- ,

-,

-;

-защита от отрицательного напряжения: -

-ограничение :

- с параметрами:

- напряжение стабилизации,

- ток стабилизации;

- с параметрами:

- напряжение стабилизации,

- ток стабилизации;

-;

-

-перемножитель напряжения: - с параметрами:

- напряжение питания,

- максимальное выходное напряжение,

- входной ток,

- коэффициент нарастания напряжения,

- коэффициент умножения,

- максимальная рабочая частота;

-усилительный элемент: -;

-фильтр пульсаций напряжения питания: - .

Модульная функция.


Рис. 24. Модульная функция.

Схема модульной функции представлена на рис. 24, здесь:

-сопротивления: -;

-усилительный элемент: -;

-фильтр пульсаций напряжения питания усилителя: - .

Регулятор скорости.

Рис. 25. Регулятор скорости.

Схема регулятора скорости представлена на рис. 25, здесь:

-компенсация нагрузки:

- ,

-,

-,

,

-

,

-

,

-

,

-;

-усилительный элемент: -

-перемножитель напряжения: - с параметрами

-ограничение сигналов:

-,

- ,

-

-фильтр пульсаций напряжения питания усилителя: -

Регулятор потока.

Рис. 26. Регулятор потока.

Схема регулятора потока представлена на рис. 26, здесь:

-компенсация нагрузки:

- ,

- ,

-,

-

,

-

-усилительный элемент: -;

-перемножитель напряжения: - ;

-ограничение сигналов: -;

-фильтр пульсаций напряжения питания усилителя: - .

Управление стабилизатором напряжения якоря.

Рис. 27. Управление стабилизатором напряжения якоря.

Схема управление стабилизатором напряжения якоря представлена на рис. 27, здесь:

- ,

-,

-,

-,

Реле защиты.


Рис. 28. Реле защиты.

Схема реле защиты представлена на рис. 28, здесь:

-,

-,

-,

-


Список литературы

1. Справочник по электрическим машинам: В 2 т./ Под общ. Ред. И. П. Копылова и Б. К. Клокова. Т. 1. – М.: Энегроатомиздат, 1988, - 456 с.

2. Заборщикова А. В., Мельников В. И. «Двигатели постоянного тока для автоматизированного электропривода»: Учебное пособие. – СПб: Петербургский гос. ун-т путей сообщ., 1994. – 84 с.

3. Башарин А. В., Новиков В. А., Соколовский Г. Г. «Управление электроприводами» : Учебное пособие для вузов. – Л.: Энергоатомиздат. Ленингр. Отд-ние, 1982. – 392 с., ил.

4. Ключев В. И. «Теория электропривода»: Учеб. Для вузов. – 2-е изд. Перераб. И доп. – М.: Энегроатомиздат, 2001. – 704 с.: ил

5. Герман-Галкин С. Г. И др. Цифровые электроприводы с транзисторными преобразователями. - Л.: Энергоатомиздат. Ленинградское отделение, 1986.–246 с.

4. Справочник разработчика и конструктора РЭА. Элементная база : В 2 кн. / Масленников М. Ю., Соболева Е. А и др. – М.: Б. И., 1996.-157-300с.

5. Операционные усилители и компараторы. – М.: Издательский дом «ДОДЭКА ХХI», 2002.-560 с.

. Бурков А. Т. Электронная техника и преобразователи: Учеб. Для вузов ж.–д. трансп. – М.: Транспорт, 1999.-464 с.

6. Александров К. К., Кузьмина Е. Г. Электротехнические чертежи и схемы. – М.: Энергоатомиздат, 1990.-288с.

Скачать архив с текстом документа