Биосистемы
СОДЕРЖАНИЕ: Электрокинетические свойства биосистем используются для получения безопасной обеззараженной воды. Обеззараживание – один из наиболее важных процессов приготовления питьевой воды.О.В. Смирнов, С.В. Воробьева
Тюменский центр Международной Академии наук экологии и безопасности жизнедеятельности
Электрокинетические свойства биосистем используются для получения безопасной обеззараженной воды. Обеззараживание – один из наиболее важных процессов приготовления питьевой воды. Известно, что потребляемая человеком вода часто является причиной желудочно-кишечных заболеваний и других заболеваний.
На основании анализа литературных материалов выделяются следующие методы обеззараживания воды, связанные с электричеством:
электрохимические, использующие электроэнергию для получения бактерицидного или нейтрального агента, озонирование, обработка ионами серебра, электролиз, электрофлотация;
методы электрообработки на основе силового взаимодействия поляризованных или обладающих жестким диполем бактериальных тел- электрофорез, электрокоагуляция, электрический разряд, обработка ультракороткими волнами тока.
При обработке воды каждым из указанных методов изменяются агрегативная и седиментационная устойчивости биодисперсий. Следовательно, теоретическая трактовка механизма обеззараживания вод, связанного с разделением фаз, а также технологические и аппаратурные решения могут быть выполнены, исходя из основных положений теории коллоидно-дисперсных систем и их устойчивости.
Известно, что недостаточная очистка исходной воды отрицательно сказывается на бактерицидном действии применяемых обеззараживающих агентов и в конечном счете на качестве получаемой воды. Хотя в процессе коагулирования бактерии и вирусы не гибнут, но они инактивируются за счет осаждения (например, в фильтре) и последующего удаления сконцентрированной фазы. Так, коагулирование и удаление коллоидных и менее дисперсных включений из речной воды понижает общее содержание вирусов в ней на 98% от исходного. Имеются также указания на достаточно полную инактивацию вирусов полиомиелита и гепатита при реагентной обработке воды.
Таким образом, учитывая, что по своей величине бактерии соответствуют коллоидным частицам и входят в состав более крупных образований, сорбируясь на частицах и агрегатах, для их удаления приемлемы адгезия, адсорбция, коагуляция и флокуляция. Экспериментально подтверждено, что отделение частиц коагулянта и взвесей от воды обеспечивает значительно большую бактериальную безопасность, чем хлорирование, озонирование или ультрафиолетовое облучение, которое эффективно при условии бесцветной и абсолютно прозрачной воды.
Нерастворимые в воде примеси с величиной частиц 10-5 – 10-4 см и более обуславливают мутность воды, а в некоторых случаях ее цветность. Эти частицы могут представлять собой ил, планктон, в них возможно присутствие болезнетворных бактерий, споровых микроорганизмов и вирусов, и, наконец, они иногда токсичны. Полнота удаления этих примесей из воды непосредственно зависит от степени осветления последней. К таким примесям со степенью дисперсности 10-6 – 10-5 см также могут быть отнесены болезнетворные (патогенные) микроорганизмы, вирусы и другие организмы, которые по своим размерам приближаются к коллоидным частицам.
Устойчивость частиц во многом зависит и от электрического заряда, который обуславливает целый ряд свойств микроорганизмов, например, их электрофоретическую подвижность, устойчивость биосуспензии, склонность к спонтанной агглютинации и некоторые другие особенности, вплоть до различий в вирулентности. Существует аналогия между электрическим зарядом белковых молекул и бактериальных клеток. Белки входящие в состав бактериальной клетки, обуславливают ряд ее особенностей, свойственных белковым частицам. Бактериальная клетка ведет себя, как амфотерный элетролит благодаря большому количеству аминокислот, входящих в состав ее бактериального белка. Поэтому диссоциация определенных групп в белковой структуре позволяет каждой белковой частице проявить себя в качестве кислоты и в качестве основания.
При диссоциации карбоксильной группы происходит образование ионов водорода, вследствие чего белок приобретает слабо кислый характер и в электрическом поле будет двигаться к аноду. В свою очередь, аминогруппа (- Н2 ), присоединяя протоны, придает белку щелочной характер и тем самым обуславливает передвижение микроба к катоду.
В воде протоны растворенного белка присоединяются к аминогруппам, таким образом частицы находятся в ионизированой форме, несущей одновременно положительный и отрицательный заряды.
В электрическом поле эти частицы электрически нейтральны и не передвигаются ни к аноду, ни к катоду. Это явление имеет место в нейтральной среде. При изменении рН среды значительно изменяется величина электрического заряда. То значение рН, при котором белковая частица ведет себя как амфиион и остается неподвижной в электрическом поле вследствие того, что потенциал ее равен 0, называется изоэлектрической точкой.
Микромолекулы, расположенные на поверхности клеточной стенки (или капсулы) микроорганизма, содержат заряженные группы, в результате чего этот организм имеет поверхностный заряд. Поверхность большинства микробных клеток заряжена отрицательно, так как среди клеточных компонентов, образующих эту поверхность, присутствуют соединения, изоэлектрическая точка которых лежит в кислой зоне (рН = 7). За небольшим исключением отдельные организмы не поляризованы, так как заряд распределяется равномерно по всей поверхности клетки.
Электрофоретическая подвижность микроорганизма зависит от штамма или вида, а также от ионной силы и значения рН окружающей среды. Она изменяется с возрастом микроорганизма, например, наименьшая электрофоретическая подвижность бактерии Е.Coli наблюдается в течение ранней экспоненциальной фазы роста. Подобно белковым частицам бактериальные клетки, суспендированные в водной среде с различными рН, при наложении электрического поля перемещаются или в сторону анода, или в сторону катода. В водной нейтральной среде они движутся по направлению к аноду, что указывает на то, что бактериальные клетки заряжены отрицательно.
Производились попытки использовать электрокинетическую подвижность бактерий в качестве признака или даже показателя сравнительной вирулентности различных представителей одного и того же вида. Однако, наряду с экспериментальными трудностями при определении этого свойства, имеется множество переменных величин, влияющих на движение бактерий в электрическом поле. Так, например, известно, что молодые клетки более электроотрицательны, чем взрослые. По-видимому, изменения электрического заряда в процессе роста клеток чрезвычайно сложны.
Электрический заряд бактериальной клетки, суспендированной в водной среде, объясняется возникновением двойного электрического слоя. Бактериальная клетка с помощью своих поверхностных ионов притягивает ионы противоположного заряда из среды. В результате этого получается двойной слой, внутренняя часть которого- поверхность клетки, а наружная- среда, в которой она находится. кси- потенциал бактерий выражает разность потенциалов между подвижной и неподвижной частями двойного электрического слоя, то есть между глубоко лежащей частью двойного слоя, непосредственно связанной с поверхностью частицы, и всей остальной средой. Из этого следует, что кси - потенциал бактерий значительно зависит от степени концентрации ионов водорода среды.
Бактерии, суспендированные в нейтральной водной среде, под влиянием электрического поля несут отрицательный электрический заряд. Это связано с состоянием щелочной диссоциации белка бактерии. При постепенном подкислении среды потенциал снижается до нуля, при дальнейшем подкислении бактерии перезаряжаются и приобретают положительный электрический заряд и поэтому под действием электрического поля перемещаются теперь к катоду. Чем больше удаляются бактерии от изоэлектрической точки, тем выше их положительный заряд. Скорость движения не изменяется и после смерти клетки.
Направление движения бактерий в электрическом поле, спонтанная агглютинация, которую они часто обнаруживают при кислой реакции среды указывают, что у бактерий при их физиологических значениях рН наблюдается перевес кислых групп над основными. Вследствие отрицательного заряда и коллоидных размеров бактерий и взаимодействие с положительно заряженными ионами окружающей среды представляет особенный интерес. Между клеткой и средой все время происходит обмен ионами, который зависит как от концентрации этих ионов, так и от их способности к адсорбции.
Таким образом, биосистемы обладают многими свойствами обычных дисперсных систем. Попытка удаления их биофазы из питьевой воды путем коагуляции и флокуляции является сравнительно новой.
Электрообработка, при которой кроме анодного растворения электродов из железа и алюминия имеют место явления специфические- поляризационные, связанные с воздействием поля на клетку как слоистый полупроводник- диэлектрик, должна быть тем более эффективной при обеззараживании воды. Известно, что для некоторых географических районов применение химических методов обеззараживания воды, например, для Крайнего Севера и Сибири, связано со значительными трудностями. В условиях низкой температуры обеззараживающее действие хлора не проявляется, транспортировка реагентов в условиях Севера и в Сибири для обеззараживания сложна и стоит дорого, для реагентной обработки необходимы капитальные очистные сооружения. На Крайнем Севере и в Сибири для обеззараживания воды наиболее перспективны электрохимические методы и методы электрообработки.
Общим для методов электрообработки является использование внешнего электрического поля. Сами методы, в зависимости от явлений, происходящих в межэлектродном пространстве, могут быть классифицированы следующим образом. Во внимание принимались технология электрообработки, особенности внешнего электрического поля (частота, равномерность и т.д.). Выделялись такие методы: электродиализ, электролиз, электрохимическая коагуляция, электрофлотация, электрофорез, электрокоагуляция, диполофорез, электрофильтрование, электроосмос, электрический разряд малой мощности, высоковольтный импульсный разряд, комплекс электрических воздействий.
Принципиально новые технологии и биотехнологии с использованием электричества породили ряд актуальных вопросов безопасности как в отношении работающих, так и в экологическом аспекте.
Применение электрообработки в быту, водоснабжении и водоотведении, а так же при освоении нефтегазоперерабатывающих территорий Сибири и Крайнего Севера, в монолитном домостроении, при сооружении оснований и фундаментов, производстве зданий из керамических масс, обезвоживании осадков, осушении грунтов и строительных конструкций, а также при создании замкнутых систем водоснабжения с использованием узлов электрообработки, позволило улучшить условия труда за счет исключения контакта работающих с вредными реагентами, например, солями железа, алюминия, магния, органическими добавками (в бетон или скоагулированную воду) и др.
Внедрение АСУ ТП с использованием электрообработок позволило достичь тех же целей там, где невозможна по технологии замена вредных компонентов- аэрозолей, излучений, шума, вибраций, вредных газов и жидкостей.
В целом отмечается снижение общего числа несчастных случае, но тяжесть их, к сожалению, несколько возрастает.
Для широкого внедрения электрических методов необходимо убедится в отсутствии опухолеродного действия воды, подвергнутой электрообработке. Особенно это важно для водообеспечения экипажей автономных объектов, длительно использующих воду после электрообработки.
Проводились исследования к.м.н. Окуневым Р.А с сотрудниками по проверке возможной онкогенности веществ образовывающихся при электрообработке.
Согласно заключению экспертов Всемирной организации здравоохранения, не менее 75% всех случаев возникновения злокачественных опухолей обусловлено факторами окружающей среды, и прежде всего широким внедрением химии в сферу производственной и хозяйственно- бытовой деятельности человека. Это обстоятельство требует проверки на канцерогенность химических веществ, однако она трудно выполнима как из-за огромного их числа (ежегодно синтезируется более 250000 новых веществ), так и сложности, длительности, дороговизны проведения классических опытов на животных. Так, эксперименты по определению канцерогенности только одного какого- либо вещества требует участия многих специалистов, использования многочисленных методик; длительности опыта не менее 2-3 лет. По данным США, оценка канцерогенности лишь одного химического вещества обходится в 300 - 500000 долларов.
Проводилось исследование с использованием в качестве микроорганизмов- тестеров сальмонеллы тифимуриум линий (штаммов) ТА- 98 и 100. На первом этапе исследовалась мутагенность воды, подвергнутой различным электрическим воздействиям: постоянное электрическое поле, электрический разряд малой мощности и их сочетание- комплекс электрических воздействий. Число мутантов обоих штаммов мальмонеллы тифимуриум в воде после использования различных методов электрообработки примерно такое же, что и в контроле (дехлорированной водопроводной воде). При этом следует подчеркнуть, что достоверным считается увеличение числа мутантов в 3 и более раза.
На следующем этапе работы изучалась мутагенность воды, обработанной комплексом электрических воздействий. В этой серии опытов производилось предварительное концентрирование воды в 500 раз с помощью хлористого метилена на специальной установке. Использовались 3 разные модификации методики Эймса: ТТА- тест на твердом агаре (чашечная проба), МПр - модификация с преинкубацией и ЖИП- высокочувствительная жидкостно- инкубационная проба.
С помощью физико-химических методов одновременно производилось количественное определение основных групп канцерогенных веществ полициклических ароматических углеводородов (в частности, бенз(а)пирена) и нитрозосоединений. Определение бенз(а)пирена проводилось флуоресцентно- спектральным методом на спектрофотометре ДФС- 12, нитрозосоединений- хемилюминесцентным методом на газовом хроматографе с детектором ТЭА- 502. Увеличение числа мутантов в пробах обработанной воды ни в одном случае не превышало допустимого предела. Ни в одной пробе не обнаружено таких канцерогеннов, как бенз(а)пирена и нитрозосоединений.
Таким образом, проведенные иследования не установили опухолеродной активности воды, подвергнутой электрообработке.