Реверсивные магнитные усилители с выходом переменного тока. Конструкция, принцип действия, приме
СОДЕРЖАНИЕ: Мордовский государственный университет им. Н.П. Огарёва Факультет электронной техники Контрольная работа Вариант №2 «Реверсивные магнитные усилители с выходом переменного тока. Конструкция, принцип действия, применение»Мордовский государственный университет им. Н.П. Огарёва
Факультет электронной техники
Контрольная работа
Вариант №2
«Реверсивные магнитные усилители с выходом переменного тока. Конструкция, принцип действия, применение»
Выполнил: студент 312 группы
Байков Д.В.
Проверил: Тетюшкин В. С.
Саранск 2010
Реверсивными усилителями с выходом переменного тока называют усилители, изменяющие на 1800 фазу тока в нагрузке при изменении полярности тока управления. Такое изменение фазы необходимо при реверсе двухфазных двигателей, работающих в следящих системах, и т.п.
Существует три основных вида схем реверсивных усилителей этого типа:
1) Дифференциальная схема – нагрузку включают между средней точкой вторичных обмоток питающего трансформатора и общей точкой соединения двух одинаковых нереверсивных усилителей. Обмотки смещения и управления намотаны и взаимодействуют точно так же, как в реверсивных схемах с выходом постоянного тока. При отсутствии тока управления сердечники обоих усилителей подмагничены в одинаковой степени и выходные токи I1 и I2 усилители равны. Разность этих токов в нагрузке близка к нулю (обычно в нагрузке в этом режиме продолжают проходить токи высших гармоник). При подаче сигнала в обмотки управления в нагрузке появляется ток, равный разности токов 1 -2 , основная гармоника которого меняет фазу на 1800 при перемене полярности тока Iу (рис. 1,а).
б)
Рис. 1. Дифференциальные схемы реверсивных магнитных усилителей с выходом переменного тока:
а) без обратной связи; б) с самонасыщением
Аналогично работает схема с самонасыщением (рис.1,б), выгодно отличающаяся от предыдущей на один-два порядка большим коэффициентом усиления. Выпрямляя токи I1 и I2 мостовыми выпрямителями, можно получить схемы с комбинированной (внешней и внутренней) обратной связью, релейный режим и т.п.
Оперируя с основными гармониками токов и напряжений, можно для выходных токов усилителей записать выражения:
I1=
и
I2=
(1)
Где н =1 -2 – ток нагрузки; Rн +jLн =Zн – сопротивление нагрузки;
L1 и L2 – индуктивности рабочих обмоток усилителей (активными сопротивлениями этих обмоток пренебрегаем).
Из (1) действующее значение основной гармоники тока нагрузки:
Iн
=
Сдвиг фаз между током Iн и напряжением Uc вторичных обмоток трансформатора определяется выражением:
tg=
В идеальном случае при полном размагничивании одного усилителя (когда Нсм -Ну =0) его индуктивность L1 бесконечности, а индуктивность другого усилителя L2 0 и к нагрузке будет приложено все напряжение Uc . В реальных усилителях всегда Uн max Uc .
2) Мостовая схема – рабочие обмотки одного 1а и 1б и рабочие обмотки другого 2а и 2б нереверсивного усилителя (рис.2,а) образуют четыре плеча моста, в одну диагональ которого включают нагрузку, а к другой подводят напряжение (рис.2,б). Цепи управления и смещения (не показанные на рисунке) осуществлены так же, как в дифференциальной схеме. При отсутствии тока управления индуктивности всех обмоток р одинаковы ,мост уравновешен и ток в нагрузке равен нулю. При подаче тока управления индуктивность уменьшается у той пары рабочих, в сердечниках которой напряженности смещения и управления складываются, и увеличивается у двух других обмоток р . Так как рабочие обмотки одного нереверсивного усилителя находятся в противоположных плечах моста, мост выходит из равновесия и по нагрузке идет ток, фаза которого меняется на 1800 при изменении полярности тока управления
Рис.2. Мостовая схема реверсивного магнитного усилителя с выходом переменного тока без обратной связи:
а) сердечники с обмотками; б) схема соединений рабочих обмоток ( стрелки означают переходные э.д.с., повышающие инерционность, снизить которую можно поменяв начала и концы 1 или 2 )
Мостовая схема реверсивного усилителя может быть выполнена и на усилителях с самонасыщением (рис. 3):
а) б)
Рис. 3. Мостовая схема реверсивного усилителя с выходом переменного
тока с самонасыщением:
а) сердечники с обмотками; б) схема соединение рабочих обмоток
3) Трансформаторная схема реверсивного усилителя также состоит из двух нереверсивных усилителей (рис. 4.). Трансформаторные усилители помимо обычных рабочих обмоток, роль которых выполняют первичные обмотки р1 , имеют вторичные обмотки р2, э.д.с. которых связана с напряжением, приложенным к первичным рабочим обмоткам, коэффициентом трансформации. В реверсивной схеме обмотки р1 обоих усилителей включены последовательно с источником питания. Включенные встречно вторичные обмотки замкнуты на сопротивление нагрузки. Обмотки управления и смещения усилителей включены, как в двух предыдущих схемах (см. рис.1).
Рис. 4. Трансформаторная схема реверсивного
усилителя с выходом переменного тока
При отсутствии тока управления сердечники обоих усилителей подмагничены обмотками смещения в одинаковой степени, индуктивности всех обмоток р1 одинаковы и напряжение источника питания поровну делится между двумя усилителями. Вторичные э.д.с. равны, и их разность, приложенная к нагрузке, равна нулю.
При подаче тока в обмотки управления уменьшается индуктивность той пары обмоток р1, в сердечниках которой напряженности управления и смещения складываются; индуктивность другой пары обмоток увеличивается. Напряжение U1 перераспределяется соответственно сопротивлениям первичных обмоток, вместе с ним изменяются вторичные напряжения. На нагрузке появляется разность вторичных напряжений, которая изменяет фазу на 180° при изменении полярности управляющего сигнала.
Путем соответствующего выбора коэффициента трансформации можно получить любую величину напряжения на нагрузке, независимо от напряжения источника питания. Таким образом, схема рис 4 совмещает функции усилителя и трансформатора.
Характеристики всех трех схем практически совпадают, если усилители выполнены на одних и тех же сердечниках, работающих в одинаковом режиме. Однако каждая схема имеет свои особенности, определяющие область ее применения.
Из схем без обратной связи (как внешней, так и внутренней, т. е. без самонасыщения) наиболее проста мостовая схема, не имеющая трансформатора (как дифференциальная схема) B обладающая меньшими потерями в обмотках по сравнению с трансформаторной схемой. Последнее объясняется тем, что в трансформаторной схеме максимальный ток нагрузки идет по всем четырем вторичным обмоткам, а с учетом коэффициента трансформации и по всем четырем первичным. В мостовой же схеме этот ток проходит по двум обмоткам из четырех, расположенных в противоположных плечах моста. Однако мостовую схему можно применять только в том случае, если максимальное напряжение на нагрузке не превышает 65—75% напряжения источника питания, так как достигнуть идеального случая, Uн max =Uc , нельзя.
Трансформаторную схему удобно применять тогда, когда максимальное напряжение на нагрузке должно быть выше или намного ниже напряжения источника питания.
Из схем с самонасыщением наиболее проста дифференциальная схема, благодаря чему она нашла широкое применение. Питающий ее трансформатор со средней точкой обычно объединяется с общим силовым трансформатором, питающим предыдущий каскад усилителя, цепи смещения и т. п.