Химические взаимодействия во Вселенной

СОДЕРЖАНИЕ: оглавление 1. Четыре типа сил Вселенной и «Стандартная модель» физики 2 2. Сильное взаимодействие 3 3. Элек­тромагнитное взаимодействие 4 4. Слабое взаимодействие 8

оглавление

[1] . Великий физик исходил из того, что пространственно-временной континуум носит риманов характер. А римановым (в узком смысле) называ­ется пространство постоянной положительной кривизны. Его на­глядный образ - поверхность обычной сферы, на которой кратчайшая линия не является прямой.

Итак, с точки зрения ОТО пространство нашего мира не обла­дает постоянной нулевой кривизной. Кривизна его меняется от точки к точке и определяется полем тяготения. И время в разных точках течет по-разному. Поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств иде­ального (евклидова) пространства. Поле тяготения в каждой точ­ке определяется значением кривизны пространства в этой точке. При этом искривление пространства-времени определяется не только полной массой вещества, из которого слагается тело, но и всеми видами энергии, присутствующими в нем, в том числе энер­гии всех физических полей. Так, в ОТО обобщается принцип тож­дества массы и энергии СТО: Е = mc 2 . Таким образом, важнейшее отличие ОТО от других физических теорий состоит в том, что она описывает тяготение как воздействие материи на свойства про­странства-времени, эти свойства пространства-времени, со своей стороны, влияют на движение тел, на физические процессы в них.

В ОТО движение материальной точки в поле тяготения рас­сматривается как свободное «инерциальное» движение, но про­исходящее не в евклидовом, а в пространстве с изменяющейся кривизной. В результате движение точки уже не является прямо­линейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства. Для определения кривизны пространства необходи­мо знать выражение для компонент фундаментального тензора (аналога потенциала в ньютоновской теории тяготения). Задача за­ключается в том, чтобы, зная распределения тяготеющих масс в про­странстве, определить функции координат и времени (компонент фундаментального тензора); тогда можно записать уравнение гео­дезической линии и решить проблему движения материальной точки, проблему распространения светового луча и т.д.

Эйнштейн нашел общее уравнение гравитационного поля (которое в классическом приближении переходило в закон тяготения Ньютона) и таким образом решил проблему тяготения в общем виде. Уравнения гравитационного поля в общей тео­рии относительности представляют собой систему из 10 уравнений. В отличие от теории тяготения Ньютона, где есть один потенциал гравитационного поля, который зависит от единствен­ной величины — плотности массы, в теории Эйнштейна грави­тационное поле описывается 10 потенциалами и может созда­ваться не только плотностью массы, но также потоком массы и потоком импульса.

Еще одно кардинальное отличие ОТО от предшествующих ей физических теорий состоит в отказе от ряда старых понятий и формулировке новых. Так, ОТО отказывается от понятий «сила», «потенциальная энергия», «инерциальная система», «евклидов характер пространства-времени» и др. В ОТО используют неже­сткие (деформирующиеся) тела отсчета, поскольку в гравитаци­онных полях не существует твердых тел и ход часов зависит от состояния этих полей. Такая система отсчета (ее называют «мол­люском отсчета») может двигаться произвольным образом, и ее форма может изменяться, у используемых часов может быть сколь угодно нерегулярный ход. ОТО углубляет понятие поля, связывая воедино понятия инерции, гравитации и метрики пространства-времени, допускает возможность гравитационных волн. Гравита­ционные волны создаются переменным гравитационным полем, неравномерным движением масс и распространяются в простран­стве со скоростью света. Гравитационные волны в земных усло­виях очень слабы. Есть возможность реальной фиксации грави­тационного излучения, возникающего в грандиозных катастро­фических процессах во Вселенной — вспышках сверхновых звезд, столкновении пульсаров и др.

Список использованной литературы

1. Альберт Эйнштейн и теория гравитации. – М., 1979. – С. 570.

2. Большая серия знаний. Химия. – М.: Мир книги, Русское энциклопедическое товарищество, 2006. – С. 10 - 21.

3. Большая энциклопедия Кирилла и Мефодия, 2007. – www.KM.ru [электронный мультипортал]

4. Бренан Р. Словарь научной грамотности. – М: Мир, 1997. – 368с.

5. Грушевицкая Т.Г., Садохин А.П., Концепции современного естествознания: Учебник для вузов. – М., 2002.

6. Ильченко В.Р. Перекрёстки физики, химии и биологии. – М.: Просвещение, 1986. – С.134 – 140.

7. Найдыш В.М., Концепции современного естествознания: учебник. – изд. 2-е, перераб. и доп. – М.: Альфа-М, ИНФРА-М, 2004.

8. Философские проблемы естествознания. – М.: Высшая школа, 1985.

9. Эйнштейн А., Инфельд Л., Эволюция физики. – М., 1965.


[1] Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965.

Скачать архив с текстом документа