Что такое звёзды
СОДЕРЖАНИЕ: Что такое звёзды и как они появляются, из чего состоят, почему образовываются звёздные скопления, какие имена имели звёзды в разных странах и у разных народов. Классификация звездных спектров. Химический состав и масса звезд. Скопления и туманности.ЧТО ТАКОЕ ЗВЕЗДЫ
Звёзды - самосветящиеся небесные тела, состоящие из раскалённых газов, по своей природе сходные с Солнцем. Солнце кажется несравненно больше звезды только благодаря близости его к Земле: от Солнца до Земли свет идёт 81/3 мин, а от ближайшей звезды Центавра - 4 года 3 мес. Из-за больших расстояний от Земли звезды и в телескоп видны как точки, а не как диски (в отличие от планет). Число звёзд, видимых невооружённым глазом на обоих полушариях небесной сферы в безлунную ночь, составляет около 5 тыс. В мощные телескопы видны миллиарды звёзд.
Изучение звёзд было вызвано потребностями материальной жизни общества (необходимость ориентировки при путешествиях, создание календаря, определение точного времени). Уже в глубокой древности звёздное небо было разделено на созвездия. Долгое время звёзды считались неподвижными точками, по отношению к которым наблюдались движения планет и комет. Со времён Аристотеля (IV в. до н. э.) в течение многих столетий господствовали взгляды, согласно которым звёздное небо считалось вечной и неизменной хрустальной сферой, за пределами которой находилось жилище богов. В конце 16 в. итальянский астроном Джордано Бруно учил, что звёзды – это далёкие тела, подобные нашему Солнцу. В 1596 немецким астрономом И. Фабрициусом была открыта первая переменная звезда, а в 1650 италийским учёным Дж. Риччоли – первая двойная звезда. В 1718 английский астроном Э. Галлей обнаружил собственные движения трёх звёзд. В середине и во 2-й половине XYIII в. русский учёный М. В. Ломоносов, немецкий учёный И. Кант, английские астрономы Т. Райт и В. Гершель и другие высказывали правильные идеи о той звёздной системе, в которую входит Солнце. В 1835-39 русский астроном В.Я. Струве, немецкий астроном Ф. Бессель и английский астроном Т. Гендерсон впервые определили расстояния до трёх близких звёзд. В 60-х гг. XIX в. для изучения звёзд применили спектроскоп, а в 80-х гг. стали пользоваться и фотографией.
Русский астроном А.А. Белопольский в 1900г. экспериментально доказал для световых явлений справедливость принципа Доплера, на основании которого по смещению линий в спектре небесных светил можно определить их скорость движения вдоль луча зрения. Накопление наблюдений и развитие физики расширили представления о звёздах.
Итак, более девяти десятых вещества нашей Галактики сосредоточено в звездах; есть галактики, в которых на звезды приходится 99,9% массы. Мир звезд многообразен, но все же большинство из них подобно нашему Солнцу. Большая часть вещества Вселенной «скрыта» в недрах звезд и имеет температуру порядка десятка миллионов градусов при очень высокой плотности и физических условиях, мало отличающихся от термодинамического равновесия. Основная эволюция вещества Вселенной происходила и происходит в недрах звезд. Именно там находился (и находится) тот «плавильный тигль», который обусловил химическую эволюцию вещества во Вселенной, обогатив его тяжелыми элементами. Именно там вещество по естественным законам природы превращается из идеального газа в очень плотный вырожденный газ и даже в «нейтронизированную» материю. Именно у некоторых звезд на поворотных этапах их эволюции может реализоваться пока еще далекое от ясности состояние «черной дыры». Вместе с тем, окружающие ядра галактик звезды (в среднем) занимают около 10^-25 объема Вселенной. Один из основателей современной теории звездной эволюции профессор М. Шварцшильд в своей известной монографии, посвященной строению и эволюции звезд, высказал очень глубокую мысль: «Если Вселенная управляется простыми универсальными законами, то разве чистое мышление оказалось бы не способным открыть эту совокупность законов? Тогда не нужно было бы опираться на наблюдения, которые приходится производить с таким трудом. Хотя законы, которые мы стремимся открыть, быть может, и совершенны, но человеческий разум далек от совершенства: представленный самому себе он склонен заблуждаться, чему мы видим печальное подтверждение среди бесчисленных примеров прошлого. Действительно, мы очень редко упускали возможность впасть в заблуждение; только новые, полученные из наблюдений данные, с трудом отвоеванные у природы, возвращали нас на правильный путь. В теории эволюции звезд они особенно необходимы, чтобы двигаться вперед, не впадая в серьезные ошибки…» Звезды, так же как Солнце, Луна и планеты, были известны человеку еще тогда, когда он человеком не был. По мнению И.С.Шкловского, самой примитивной астрономической информацией располагают животные, причем не только высшие. Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды - это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Этого не понимали даже выдающиеся мыслители, как Кеплер. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского учёного почти всеми молчаливо принимались, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. И только в самом начале ХХ века немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающееся открытие было сделано с помощью спектрального анализа. Открытие немецкого ученого состояло в том, что он обнаружил в спектрах некоторых двойных звезд две линии поглощения, длины волн которых не менялись, в то время как у всех остальных спектральных линий длины волн периодически менялись. Эти «неподвижные» линии, принадлежащие ионизированному кальцию, получили название «станционарных ». Они образуются не в наружных слоях звезд, а где – то «по пути» между звездой и наблюдателем. Так впервые был обнаружен межзвездный газ, который в проходящем сквозь него звездном свете производит поглощение в узких спектральных участках. Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент.
Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек. Это и приводит к незначительному смещению длин волн линий поглощения.
По мнению И.С.Шкловского, звезды рождаются редко. В нашей весьма крупной Галактике за год формирования всего около дюжины новых светил. Как правило, небольшие группы возникших звезд прячутся в глубине непрозрачных газопылевых облаков, скрывая от астрономов первые, возможно, самые интересные, этапы своего развития. К счастью, звезды гибнут поодиночке, а рождаются вместе. Изредка появление звезд «в одном месте и в одно время» происходит столь интенсивно, что напоминает взрыв, разрушающий темное родительское облако и обнажающий начальный момент формирования звезд. Однако области взрывного звездообразования тоже встречаются не часто. Астрономам известны лишь две, расположенные в относительной близости от Солнца: звездногазовый комплекс NGC 3603 в нашей Галактике и комплекс Тарантул – в соседней, Большом Маггелановом Облаке. Их детальным исследованием астрономы Европейской южной обсерватории занялись сразу после того, как очень большой телескоп (VLT) открыл свой первый 8-метровый «глаз». Новый проект имел целью разрешить давно мучившую астрономов загадку. Дело в том, что звезды весьма значительно различаются по своей массе; у одних она в десятки раз больше, чем у Солнца, у других - во много раз меньше. Между тем от массы зависит мощность излучения, его спектральный состав, срок жизни звезды и сила ее влияния на окружающее вещество. К сожалению, до сих пор астрономы не понимают, от чего зависит масса рождающейся звезды. Известно только, что маленькие появляются гораздо чаще больших. Биолога такой факт ничуть бы не удивил: если больших будет больше, чем маленьких, нарушатся пищевые цепи. Однако звезды (за редкими исключениями) не «питаются» друг другом. Чтобы понять их распределение по массе, астрономы проверяют некоторые теоретические идеи. Одна, довольно популярная, заключается в том, что масса звезды зависит от условий формирования, прежде всего – от плотности и температуры исходного газа. А это значит, что в разных облаках должны формироваться звезды разной массы. Возможна и другая гипотеза: по мере изменения условий в облаке будет меняться и характерная масса формирующихся в нем звезд; следовательно, звезды разной массы в пределах одного очага звездообразования должны иметь разный возраст. Проверить эти предположения оказалось нелегко: близкие области звездообразования не содержат столь редко рождающихся массивных объектов, а те немногочисленные крупные очаги, где они появляются, находятся так далеко от Солнца, что нормальному телескопу не рассмотреть в них блеклые маломассивные звезды. Именно поэтому гигантский телескоп VLT Анту решено использовать для поиска слабых объектов в крупнейших очагах звездообразования. Комплекс NGC 3603- один из крупнейших в Галактике. Суммарная масса его наиболее массивных звезд спектральных классов О и В превышает 2 тысячи солнечных масс. Пятьдесят его самых ярких О-звезд дают ионизующий поток в 100 раз более мощный, чем хорошо известное скопление молодых звезд в нашей Галактике. Сравнимое с ним пока найдено только в соседней системе – туманности Тарантул. Находящееся в ее центре звездное скопление NGC 2070 удалено от нас в 8 раз дальше, чем комплекс NGC 3603 . Но во многом эти области схожи между собой. До сих пор излучение звездного скопления NGC 3603 было чрезвычайно затруднено сильным поглощением света межзвездной пылью: на огромном расстоянии от объекта до Земли пыль ослабляет излучение в оптическом диапазоне в 80 раз. Появление телескопа Анту с его «прибором ночного видения» - инфракрасной камерой-спектрометром ISAAC- сделало проблему разрешимой: в этом диапазоне поглощение пылью ослабляет излучение всего в 2 раза. Чтобы иметь возможность измерить по отдельности яркость каждой звезды в этом сверхплотном конгломерате, необходимо было получить предельно четкое изображение скопления. Чилийское небо и европейская техника дали такую возможность: диаметр изображений составил 0.4 угл. сек. Чтобы «вытянуть» слабые звезды и не получить «передержки» у ярких звезд, был использован хитроумный прием короткой многократной экспозиции с последующим сложением отдельных кадров в память компьютера. В результате этой работы удалось надежно измерить яркость и цвет около 7 тысяч звезд скопления NGC 3603. Впервые подсчитаны и измерены все звезды в активном очаге их формирования вплоть до карликов с массой в 1/10 солнечной. Для сравнения: в туманности Тарантул нижняя граница массы излученных звезд составляет 1 массу Солнца. Все это очень молодые звезды с возрастом от 300 тысяч до 1 миллиона лет; некоторые из них еще в процессе формирования. При этом большинство звезд имеет малую массу. Важнейший вывод работы международной команды астрономов таков: вопреки теоретическим прогнозам маломассивные звезды формируются вместе с массивными в едином эпизоде звездообразования. Вероятно, каждый хотя бы раз видел удивительное астрономическое явление – «падающие звезды». Они появляются неожиданно, почти мгновенно исчезают и обычно бывают не очень яркими. Но иногда даже дух захватывает, до чего красиво и ярко вспыхивает звезда. Она угасает не вмиг, а некоторое время оставляет за собой светящийся след. И уж совсем редко можно увидеть «звездный дождь» настоящий ливень из «падающих звезд». Так было, например, 12 ноября 1833 года, «звезды» падали, словно хлопья снега. Каждую секунду их появлялось по 20, за час – более 70 тысяч. Можно было подумать, что все звезды упали с неба. Но когда «звездный дождь» закончился, оказалось, что все 3000 звезд, которые мы обычно видим невооруженным глазом, остались на своих местах. Научное название «падающих звезд» - метеориты. Одно время ученые спорили, имеют ли метеориты вообще какое-либо отношение к астрономии. Астрономы выяснили, что метеориты возникают, когда крохотная космическая частичка или камушек, с большой скоростью врезаются в земную атмосферу, разогревается в ней и сгорает, вспыхнув на высоте около 100 километров. До встречи с Землей метеоритные тела долго носились в космическом пространстве. Эти частички, действительно, очень малы и весят не более чем несколько капель воды. Яркие метеориты порождаются частичками размером с кедровый орешек. Так, что «падающие звезды» совсем не похожи на настоящие звезды, многие из которых даже больше Солнца. А отчего же бывают «звездные дожди»? Происходят они, когда Земля встречается не с отдельными метеоритными частичками, а с их скоплением или роем. А чтобы понять, откуда эти скопления я расскажу одну историю…
Средние скорости движения звезд нашей Галактики, как по вытянутым, так и по круговым орбитам составляют 100-300 км/с. В менее массивных галактиках они меньше, в более массивных больше, но всегда лежат в пределах от десятков до тысячи километров в секунду. В результате огромной работы, проделанной астрономами ряда стран в течение последних десятилетий, мы многое узнали о различных характеристиках звезд, природе их излучения и даже эволюции. Как это ни покажется парадоксальным, сейчас мы гораздо лучше представляем образование и эволюцию многих типов звезд, чем собственной планетной системы. В какой-то степени это понятно: астрономы наблюдают огромное множество звезд, находящихся на различных стадиях эволюции, в то время как непосредственно наблюдать другие планетные системы мы пока не можем. Мы упомянули о «характеристике» звезд. Под этим понимаются такие их основные свойства, как масса, полное количество энергии, излучаемой звездой в единицу времени (это величина называется «светимостью» и обычно обозначается буквой L), радиус и температура поверхностных слоев.
Хаббл
Выведенная на орбиту вокруг Земли в конце апреля 1990 года с борта американского челнока «Дискавери», эта крупнейшая орбитальная обсерватория в 12 тонн сразу стала «ньюсмейкером» №1 для астрономов и астрофизиков всего мира. Ведь Хабблу удалось зафиксировать «специфическое голубое сияние» в молодой и горячей – в буквальном смысле слова – спиральной галактике в созвездии Пегаса. Этот голубой свет донёс до нас информацию о катастрофических по своим масштабам событиях, которые происходили там 150 миллионов световых лет назад. Именно на таком расстоянии находится от Солнца нынешний объект исследований Хаббла. В чём уникальность новых данных? Фактически учёные получили в своё распоряжение бесценный экспериментальный материал, позволяющий разобраться в некоторых особенностях самых ранних этапов рождения звёзд. «Очень вероятно, что эти события демонстрируют нам собой тип формирования звезды, который имел место в ранней вселенной, - заявила Николь Омье, сотрудница Европейской южной обсерватории». В рассеянных голубоватых скоплениях заброшенной в умопомрачительную даль от Земли «изодранной» спиральной галактики NGC 7673 загораются прямо сейчас, в данный момент, миллионы молодых звёзд! Каждое из этих голубых скоплений состоит из тысячи звёзд-младенцев. Собственно, именно потому, что это молодые звёзды, свет от них смещён в синюю часть оптического спектра (по сравнению с более старыми красными звёздами). Мало того, эти «малютки» испускают в окружающее пространство неимоверно интенсивные потоки радиации. Каждое синее скопление выбрасывает в 100 раз более интенсивные потоки ультрафиолета, чем, например, известная на сегодняшний день ближайшая к Солнцу область звёздообразования в туманности Тарантула, по соседству с нашей галактикой Млечного Пути. Теоретики после получения этих данных выдвинули сразу несколько гипотез о причинах возникновения этого звёздного «роддома». Голубые кластеры в спиральной галактике NGC 7673 могли стать следствием её столкновения с другой, близлежащеё галактикой. Представить себе масштабы такого столкновения вряд ли возможно. Но недаром Лев Ландау ещё в 50-е годы прошлого века заметил, что физики могут объяснить даже то, что не могут уже представить. Другая гипотеза не менее экзотична. Рассеянный внутригалактический газ образовал гигантские кластеры - настоящие газовые глыбы, и направленный поток мощного излучения от какой-то внешней звезды буквально поджёг эти газовые айсберги галактики. Информационное CNNприводит слова Николь Омье: «С помощью наземных телескопов до сих пор мы могли наблюдать процесс звёздообразования только на объектах в виде нечётких областей (глыб) в космосе, но теперь, с Хабблом, мы можем изучать непосредственно процесс формирования звёзд в раннеё вселенной.»
Откуда произошли названия звёзд и созвездий???
Если вы посмотрите на звёздное небо, то при некотором воображении в россыпи более или менее ярких звёзд увидите различные фигуры. Эти фигуры можно составлять различными способами. Уже в древней Греции было выделено 48 таких фигур, заполнивших почти всё звёздное небо, они получили название «созвездий». Некоторые звёзды не входили в созвездия, а характеризовались тем, около какого созвездия они расположены. Ещё древние вавилоняне, астрономические знания которых оказали сильное влияние на греков, выделили 12 созвездий, расположенных вдоль большого круга небесной сферы, по которому совершает своё видимое годичное движение Солнце(этот круг называется эклиптикой, от греческого «затмение», так как затмения происходят, когда Луна попадает на этот круг). Число созвездий зодиака равно числу месяцев, и Солнце проходит каждое из них за месяц. Изображения и названия созвездий зодиака и соответствующих месяцев, сделанном на основе звёздного атласа известного астронома XYII века Яна Гевелия. Первоначально вступление Солнца в созвездие Овна приурочивалось ко дню весеннего равноденствия, но за две тысячи лет этот день несколько сдвинулся по отношению к созвездиям зодиака. (Заметим, что Овен и Телец – устаревшие названия барана и быка), Под Стрельцом, т.е. стрелком, понимали кентавра, вооружённого луком со стрелами, под Козерогом – козла с рыбьим хвостом, Рыб представляли в виде двух рыб, соединенных тесьмой. Слово зодиак, от греческого «животное», объясняется тем, что большинство созвездий зодиака имеют вид животных. Фигуры созвездий зодиака и их названия в настоящее время почти такие же, как у греков: разница состоит только в том, что греки называли созвездие Весов «Клешнями» и рассматривали как клешни Скорпиона.
Севернее зодиака греки располагали 21 созвездие, а южнее – 15 созвездий: созвездия южного полушария греки знали хуже, так как в древности путешественники редко доходили даже до экватора. Уже в новое время были добавлены неизвестные грекам Южный Крест и другие южные созвездия. Названия созвездий объясняются теми фигурами, которые получались при соединении звёзд, образующих созвездие линиями. Разные народы по-разному истолковывали эти фигуры. Например, в ковше Большой Медведицы греки видели медведя, а арабы – погребальную процессию в виде гроба, перед которыми идут плакальщицы, возглавляемые «предводителем плакальщиц». Некоторые созвездия связаны между собой: Волопаса, т.е. пастуха, греки рассматривали как сторожа медведиц.
Шесть северных созвездий – Цефея, Кассиопеи, Андромеды, Персея, Пегаса и Кита – также связаны общей легендарной об эфиопском царе Кефее (Цефей – латинская форма этого имени), его жене Кассиопее и дочери Андромеде. Согласно этой легенде, Кассиопея оскорбила морских нимф нереид, и в наказание за это морской бог Посейдон послал морское чудовище Кита (представлявшегося зверем с лапами и страшной пастью) опустошать берега Эфиопии. Для спасения страны Кефей должен был принести в жертву свою дочь, имя которой означает «не видевшая мужа». Девушка уже была прикована к скале, когда появился на крылатом коне Пегасе Персей – герой, убивший ужасную Медузу Горгону, взгляд которой обращал всех, кто встречался с ней, в камень. Сам Персей в борьбе с Медузой Горгоной смотрел не на неё, а на её отражение в своём щите. Персей отрубил голову Горгоны и явился к Андромеде с этой головой. Показав её Киту, он превратил его в камень, освободил Андромеду и женился на ней. Расположение указанных созвездий соответствует моменту прибытия Персея.
Созвездие Ориона своим названием обязано имени мифического стрелка, убитого богиней Артемидой за то, что он вызвал её на состязание в метании диска.
Созвездие Геркулеса получило своё название только в новое время, греки называли «Коленопреклоненный».
Созвездие Эридана греки называли «Рекой». Эридан – древнее название реки По, а также одно из имён мифического сына Солнца Фаэтона, согласно легенде упавшего на землю и утонувшего в По.
Известны и другие «преобразования» созвездий. Так, созвездие Корабля Арго впоследствии было разделено на Корму, Паруса, Компас и Киль. А из мелких звёзд, не входящих в известные раньше созвездия, были образованы новые созвездия: Горячие Псы, Щит Собесского, Ящерица, Рысь, Единорог и Секстант.
Ещё более любопытны названия звёзд. Пожалуй, только название Полярной звезды – звезды L созвездия Малой Медведицы (яркие звёзды созвездий принято обозначать греческими буквами L, B, Y, … в порядке их убывающего блеска) – и звёзд, носящих собственные имена людей, понятны без обращения к словарю. Полярная звезда получила своё название потому, что она находится вблизи Северного Полюса мира, вокруг которого происходит видимое суточное вращение звёздного неба. Собственные имена имеют, например, звёзды L и B созвездия Близнецов. Это Кастор и Поллукс, они названы так по именам двух мифических близнецов – сыновей Зевса и Леды. Звезда L Гончих Псов получила своё название Сердце Карла уже в новое время.
Очень немногие звёзды имеют греческие и латинские названия, большинство названий арабского происхождения. Это объясняется тем, что в средние века центр передовой науки находился на Ближнем и Среднем Востоке, где языком науки был арабский язык (как до этого в эллинистических странах – греческий, а позже в Европе – латинский). Важный вклад в науку того времени внесли учёные Средней Азии и Азербайджана: аль-Хорезми и аль-Бируни, Ибн Сина и Омар Хайям, Насир Ад-Дин ат-Туси и Улугбек. Много важных открытий было сделано также учёными Ирана, Ирака, Сирии, Египта, Северо-Западной Африки и мусульманской Испании. Труды этих учёных попадали в Западную Европу через Константинополь. Со многими трудами античной науки европейцы познакомились сначала по их арабским переводам и только потом – с греческими оригиналами.
Большинство арабских названий возникло следующим образом. В знаменитом труде александрийского астронома Клавдия Птолемея (II век до н.э.), обычно называемом нами «Альмагестом», имелся каталог 10022 звёзд, положения которых были измерены астрономами того времени. (Европейцы познакомились с этим трудом по его арабскому переводу: одно из греческих названий этого сочинения – «Мегисте синтаксис», что значит «Величайшая система», - арабы переделали в «аль-Маджисти», откуда и получилось «Альмагест».) Каждую звезду Птолемей характеризовал небольшим описанием, указывающим место этой звезды в созвездии. Именно от этих описаний в арабском переводе и произошли наши названия. Некоторые названия, впрочем, восходят не к Птолемею, а к староарабским названиям звёзд.
Заметим, что название Антареса объясняется тем, что эта звезда, как и Марс, красного цвета и является как бы заместителем Марса (наши названия планет – имена римских богов, соответствующих греческим богам Гермесу, Афродите, Аресу, Зевсу и Хроносу, именами которых называли планеты греки.)
От названия звезды Регул происходит слово «регулировать», так как этой звездой пользовались при регулировании полевых работ в Древнем Египте. Названия Мира и Проксима были даны учёными сравнительно недавно: название Мира получила звезда созвездия Кита за её удивительные свойства (она является долгопериодической переменной звездой), название Проксима было присвоено звезде созвездия Центавра после того, как было обнаружено, что эта звезда расположена ближе всех звёзд к Солнечной системе.
Светимость
Светимость звезды L часто выражается в единицах светимости Солнца, которая равна 4*1^33 эрг/с. По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют карлики, светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая абсолютная величина звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например +8,+10.
Температура
Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. - желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым показателем цвета, равным разности фотографической и визуальной и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра.
У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, СП, Н20 и др.). По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца. Последовательность спектров звёзд, получающихся при непрерывном изменении температуры их поверхностных слоёв, обозначается следующими буквами: O, B, A, F, G, K, M, от самых горячих к очень холодным. Каждая буква описывает спектральный класс.
Спектры звезд
Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1 . . . В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего черного тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли.
Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.
Химический состав звезд
Химический состав наружных слоев звезд, откуда к нам непосредственно приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд - это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов. Хотя по числу атомов так называемые тяжелые металлы (т.е. элементы с атомной массой, большей, чем у гелия) занимают во Вселенной весьма скромное место, их роль очень велика. Прежде всего, они определяют характер эволюции звезд, т.к. непрозрачность звездных недр для излучений существенно зависит от ее непрозрачности.
Наличие во Вселенной (в частности в звездах) тяжелых элементов имеет важное значение. Совершенно очевидно, что живая субстанция может быть построена только при наличии тяжелых элементов и их соединений. Общеизвестна роль углерода в структуре живой материи. Не менее важны и другие элементы, например железо, фосфор. Царство живого - это сложнейшие сцепления тяжелых элементов. Мы можем, поэтому со всей определенностью сформулировать следующее положение: если бы не было тяжелых металлов, не было бы и жизни. Поэтому проблема химического состава космических объектов (звезд, туманностей, планет) имеет первостепенное значение для анализа условий возникновения жизни в тех или иных слоях Вселенной.
Радиус звезд
Энергия, испускаемая элементом поверхности звезды единичной площади в единицу времени, определяется законом Стефана-Больцмана. Поверхность звезды равна 4П^2Таким образом, если известны температура и светимость звезды, то мы можем вычислить ее радиус.
Масса звезд
В сущности, говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (есть не входящей в состав кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее сестра, входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.
Считается, что объекты с массами меньшими 0,02 М уже не являются звездами. Они лишены внутренних источников энергии, и их светимость близка к нулю. Обычно эти объекты относят к планетам. Наибольшие непосредственно измеренные массы не превышают 60М.
Рождение звезд
Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.
Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газово-пылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных «радио изображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не будем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны Н», т. е. облака ионизованного межзвездного газа. Причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд — объектов заведомо молодых.
Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеоров, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях» перейти в излучение. Как мы увидим, ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.
Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов).
В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно просачивается сквозь недра звезд и, в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся количество энергии составит примерно 1052 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце израсходовало не свыше 10% своего первоначального запаса водорода.
Теперь можно представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.
При сжатии протозвезды температура ее повышается, и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана — Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме спектр - светимость такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.
В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более ранним. Таким образом, двигаясь по диаграмме спектр — светимость, протозвезда довольно быстро сядет на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение, и газовый шар перестает сжиматься. Протозвезда становится звездой.
Но что произойдет со звездами, когда реакция гелий — углерод в центральных областях исчерпает себя, так же как и водородная реакция в тонком слое, окружающем горячее плотное ядро? Какая стадия эволюции наступит вслед за стадией красного гиганта?
Белые карлики
Совокупность данных наблюдений, а также ряд теоретических соображений говорят о том, что на этом этапе эволюции звезды, масса которых меньше, чем 1,2 массы Солнца, существенную часть своей массы, образующую их наружную оболочку, сбрасывают. Такой процесс мы наблюдаем, по-видимому, как образование так называемых планетарных туманностей. После того как от звезды отделится со сравнительно небольшой скоростью наружная оболочка, обнажатся ее внутренние, очень горячие слои. При этом отделившаяся оболочка будет расширяться, все дальше и дальше отходя от звезды.
Мощное ультрафиолетовое излучение звезды — ядра планетарной туманности — будет ионизовать атомы в оболочке, возбуждая их свечение. Через несколько десятков тысяч лет оболочка рассеется и останется только небольшая очень горячая плотная звезда. Постепенно, довольно медленно остывая, она превратится в белый карлик.
Таким образом, белые карлики как бы вызревают внутри звезд — красных гигантов — и появляются на свет после отделения наружных слоев гигантских звезд. В других случаях сбрасывание наружных слоев может происходить не путем образования планетарных туманностей, а путем постепенного истечения атомов. Так или иначе, белые карлики, в которых весь водород выгорел и ядерные реакции прекратились, по-видимому, представляют собой заключительный этап эволюции большинства звезд. Логическим выводом отсюда является признание генетической связи между самыми поздними этапами эволюции звезд и белыми карликами.
Черные карлики
Постепенно остывая, они все меньше и меньше излучают, переходя в невидимые черные карлики. Это мертвые, холодные звезды очень большой плотности, в миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы сравнимы с солнечной. Процесс остывания белых карликов длится много сотен миллионов лет. Так кончает свое существование большинство звезд. Однако финал жизни сравнительно массивных звезд может быть значительно, более драматическим.
Нейтронные звезды
Если масса сжимающейся звезды превосходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на том не остановится. Гравитационные силы в этом случае очень велики, что электроны вдавливаются внутрь атомных ядер. В результате изотопы превращаются в нейтроны способные прилетать друг к другу без всяких промежутков. Плотность нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс, нейтроны, как и электроны, способны сами предотвратить дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего лишь от 10 до 15 км, а один кубический сантиметр ее вещества весит около миллиарда тонн. Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается, скорость ее вращения возрастает - точно так же, как фигурист на льду вращается гораздо быстрее, когда прижимает к себе руки. Нейтронная звезда совершает несколько оборотов в секунду. Наряду с этим исключительно быстрым вращением, нейтронные звезды имеют магнитное поле, в миллионы раз более сильное, чем у Земли.
Пульсары
Первые пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены тем фактом, что какие-то природные объекты могут излучать радиоимпульсы в таком правильном и быстром ритме. Вначале, правда, ненадолго астрономы заподозрили участие неких мыслящих существ, обитающих в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды, движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров около четырех секунд, а самых быстрых - тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы.
Сверхновые
Звезды, массы которых не достигают 1,4 солнечной, умирают тихо и безмятежно. А что происходит с более массивными звездами? Как возникают нейтронные звезды и черные дыры? Катастрофический взрыв, которым заканчивается жизнь массивной звезды, - это воистину впечатляющее событие. Это самое мощное из природных явлений, совершающихся в звездах. В мгновение высвобождается больше энергии, чем излучает ее наше Солнце за 10 миллиардов лет. Световой поток, посылаемый одной гибнущей звездой, эквивалентен целой галактике, а ведь видимый свет составляет лишь малую долю полной энергии. Остатки взорвавшейся звезды разлетаются прочь со скоростями до 20 000 км в секунду.
Такие грандиозные звездные взрывы называются сверхновыми. Сверхновые - довольно редкое явление. Каждый год и других галактиках обнаруживают от 20 до 30 сверхновых, главным образом в результате систематического поиска. За столетие в каждой галактике их может быть от одной до четырех. Однако в нашей собственной Галактике сверхновых не наблюдали с 1604 г. Может быть, они и были, но остались невидимыми из-за большого количества пыли в Млечном Пути.
Чёрные дыры
От звезды, имеющей массу больше, чем три солнечных, и радиус больше 8,85километра, свет уже не сможет уйти от нее в пространство. Уходящий от поверхности луч искривляется в поле силы тяжести так сильно, что возвращается обратно на поверхность. Кванты света - фотоны - излучаемые телом, возвращаются обратно, как брошенные вверх на земле камни. Никакое излучение не прорывается во внешний мир, чтобы донести весть о печальной судьбе звезды.
Превратившись в черную дыру, небесное тело не исчезает из Вселенной. Оно дает о себе знать внешнему миру благодаря своей гравитации. Черная дыра поглощает световые лучи, идущие от нее на более значительное расстояние. Черная дыра может вступать в гравитационное взаимодействие с другими телами: она может удерживать около себя планеты или образовывать с другой звездой двойную систему. Итак, скорость эволюции звезд определяется их первоначальной массой. Так как по ряду признаков со времени образования нашей звездной системы — Галактики — прошло около 15—20 млрд. лет, то за это конечное (хотя и огромное) время весь описанный эволюционный путь прошли только те звезды, массы которых превышают некоторую величину. По-видимому, эта критическая масса всего лишь на 10—20% превышает массу Солнца. С другой стороны, как уже подчеркивалось, процесс образования звезд из межзвездной газово-пылевой среды происходил в нашей Галактике непрерывно. Он происходит и сейчас. Именно поэтому мы наблюдаем горячие массивные звезды в левой верхней части главной последовательности. Но даже звезды, образовавшиеся в самом начале формирования Галактики, если их масса их меньше чем 1,2 солнечной, еще не успели сойти с главной последовательности. Заметим, кстати, что темп звездообразования в настоящее время значительно ниже, чем много миллиардов лет назад. Солнце образовалось около 5 млрд. лет назад, когда Галактика уже давно сформировалась и в основных чертах была сходна с современной. Вот уже, по крайней мере, 4,5 млрд. лет оно сидит на главной последовательности, устойчиво излучая благодаря ядерным реакциям превращения водорода в гелий, протекающим в его центральных областях. Сколько еще времени это будет продолжаться? Расчеты показывают, что наше Солнце станет красным гигантом через 8 млрд. лет. При этом его светимость увеличится в сотни раз, а радиус — в десятки. Эта стадия эволюции нашего светила займет несколько сот миллионов лет. Наконец, тем или иным способом разбухшее Солнце сбросит свою оболочку и превратится в белый карлик. Вообще говоря, нам, конечно, небезразлична судьба Солнца, так как с нею тесно связано развитие жизни на Земле.
Диаграмма Герцшпрунга-Ресселла
Для понимания природы звезд важно выявить зависимости между их отдельными характеристиками. Такие связи находятся путем сопоставления соответствующих величин. Так, в начале XX в. датский астроном Э. Герцшпрунг и американский астрофизик Г. Ресселл установили одну из таких зависимостей и представили ее в виде диаграммы, носящей теперь их имена.
На горизонтальной оси диаграммы Герцшпрунга — Ресселла (диаграммы Г. — Р) откладывают температуру звезды, а на вертикальной — ее светимость в относительных единицах (по отношению к светимости Солнца). Каждой звезде на диаграмме отвечает вполне определенная точка. Обычно говорят, что место на диаграмме занимает звезда, а не соответствующая ей точка, и при обсуждении эволюции звезд пишут: «звезда движется по диаграмме», подразумевая при этом, что в процессе эволюции звезды из-за изменения температуры и светимости звезды соответствующая ей точка на диаграмме Г. — Р. меняет свое положение.
Из этой диаграммы следует, что светимость звезды и ее спектральный класс связаны между собой определенной, хотя и не однозначной зависимостью. Большинство звезд расположено вдоль линии, идущей от горячих и ярких звезд к холодным и слабым («тусклым») звездам. Это и есть известная главная последовательность , а принадлежащие ей звезды - звездами главной последовательности. К этой последовательности принадлежит подавляющее большинство звезд, в том числе и наше Солнце (спектральный класс G2). Главная последовательность в месте, отмеченном вертикальной чертой, делится на верхнюю и нижнюю части. Звезды нижней части главной последовательности называются желтыми или красными карликами (в зависимости от их температуры). Солнце — типичный желтый карлик.
Выше главной последовательности в области температур ниже 6000 К расположены звезды, образующие группу красных гигантов (их светимость порядка 102 —103 и радиус порядка 10—60 R) и группу красных сверхгигантов (L 10 L , R 200—300 R). Звезды горячие (T ЗОООО К) и яркие (L 104 — 106 L , R 40 R) называются белыми сверхгигантами. Заметьте, что холодных и неярких звезд гораздо больше, чем горячих и ярких.
В левом нижнем углу диаграммы находятся белые карлики (T 10000 К, L 10-4 L , RO,OlR).
Итак, мы видим, что светимость звезды и спектральный класс взаимосвязаны. Одна из первых задач теории — объяснить эту зависимость, найти физические явления, лежащие в ее основе. Как это сделала современная астрофизика, мы увидим позже. Здесь же только отметим, что сразу после построения этой диаграммы ей приписали эволюционное значение: предполагалось, что звезды эволюционируют вдоль главной последовательности от горячих и ярких звезд к холодным и слабым. Потом выяснилось, что эволюция звезд имеет более сложный характер, и до сих пор звезды, изображения которых находятся в левой верхней части диаграммы, называют ранними, а звезды другого конца главной последовательности — поздними.
Звёздные скопления
По-видимому, почти все звезды рождаются группами, а не по отдельности. Поэтому нет ничего удивительного в том, что звездные скопления - вещь весьма распространенная. Астрономы любят изучать звездные скопления, потому что им известно, что все звезды, входящие в скопление, образовались примерно в одно и то же время и приблизительно на одинаковом расстоянии от нас. Любые заметные различия в блеске между такими звездами являются истинными различиями. Какие бы колоссальные изменения ни претерпели эти звезды с течением времени, начинали они все одновременно. Особенно полезно изучение звездных скоплений с точки зрения зависимости их свойств от массы - ведь возраст этих звезд и их расстояние от Земли примерно одинаковы, так что отличаются они друг от друга только своей массой.
Звездные скопления интересны не только для научного изучения - они исключительно красивы как объекты для фотографирования и для наблюдения астрономами-любителями. Есть два типа звездных скоплений: открытые и шаровые. Эти названия связаны с их внешним видом. В открытом скоплении каждая звезда видна отдельно, они распределены на некотором участке неба более или менее равномерно. А шаровые скопления, наоборот, представляют собой как бы сферу, столь плотно заполненную звездами, что в ее центре отдельные звезды неразличимы.
Открытые звездные скопления
Наверное, самым знаменитым открытым звездным скоплением являются Плеяды, или Семь сестер, в созвездии Тельца. Несмотря на такое название, большинство людей может разглядеть без помощи телескопа лишь шесть звезд. Общее количество звезд в этом скоплении - где-то между 300 и 500, и все они находятся на участке размером в 30 световых лет в поперечнике и на расстоянии 400 световых лет от нас.
Возраст этого скопления - всего 50 миллионов лет, что по астрономическим стандартам совсем немного, и содержит оно очень массивные светящиеся звезды, которые не успели еще превратиться в гиганты. Плеяды - это типичное открытое звездное скопление; обычно в такое скопление входит от нескольких сотен до нескольких тысяч звезд.
Среди открытых звездных скоплений гораздо больше молодых, чем старых, а самые старые едва ли насчитывают более 100 миллионов лет. Считается, что скорость, с которой они образуются, с течением времени не меняется.
Дело в том, что в более старых скоплениях звезды постепенно отдаляются друг от друга, пока не смешаются с основным множеством звезд - тех самых, тысячи которых предстают перед нами в ночном небе. Хотя тяготение до некоторой степени удерживает открытые скопления вместе, они все же довольно непрочны, и тяготение другого объекта, например, большого межзвездного облака, может их разорвать.
Некоторые звездные группы на столько слабо удерживаются вместе, что их называют не скоплениями, а звездными ассоциациями. Они существуют не очень долго и обычно состоят из очень молодых звезд вблизи межзвездных облаков, из которых они возникли. В звездную ассоциацию входит от 10 до 100 звезд, разбросанных в области размером в несколько сотен световых лет.
Облака, в которых образуются звезды, сконцентрированы в диске нашей Галактики, и именно там обнаруживают открытые звездные скопления. Если учесть, как много облаков содержится в Млечном Пути, и какое огромное количество пыли находится в межзвездном пространстве, то станет очевидным, что те 1200 открытых звездных скоплений, о которых мы знаем, должны составлять лишь ничтожную часть всего их числа в Галактике. Возможно, их общее количество достигает 100 000.
Шаровые звездные скопления
В противоположность открытым, шаровые скопления представляют собой сферы, плотно заполненные звездами, которых там насчитываются сотни тысяч и даже миллионы. Звезды в этих скоплениях расположены так густо, что, если бы наше Солнце принадлежало к какому-нибудь шаровому скоплению, мы могли бы видеть в ночном небе невооруженным глазом более миллиона отдельных звезд. Размер типичного шарового скопления - от 20 до 400 световых лет.
В плотно набитых центрах этих скоплений звезды находятся в такой близости одна к другой, что взаимное тяготение связывает их друг с другом, образуя компактные двойные звезды.
Иногда происходит даже полное слияние звезд; при тесном сближении наружные слои звезды могут разрушиться, выставляя на прямое обозрение центральное ядро. В шаровых скоплениях двойные звезды встречаются в 100 раз чаще, чем где-либо еще. Некоторые из этих двойняшек являются источниками рентгеновского излучения.
Вокруг нашей Галактики мы знаем около 200 шаровых звездных скоплений, которые распределены по всему огромному шарообразному гало, заключающему в себе Галактику. Все эти скопления очень стары, и возникли они более или менее в то же время, что и сама Галактика: от 10 до 15 миллиардов лет назад. Похоже на то, что скопления образовались, когда части облака, из которого была создана Галактика, разделились на более мелкие фрагменты. Шаровые скопления не расходятся, потому что звезды в них сидят очень тесно, и их мощные взаимные силы тяготения связывают скопление в плотное единое целое.
Шаровые звездные скопления наблюдаются не только вокруг нашей Галактики, но и вокруг других галактик любого сорта, Самое яркое шаровое скопление, легко видимое невооруженным глазом, это Омега Кентавра в южном созвездии Кентавр. Оно находится на расстоянии 16 500 световых лет от Солнца и является самым обширным из всех известных скоплений: его диаметр - 620 световых лет. Самым ярким шаровым скоплением северного полушария является М13 в Геркулесе, его с трудом, но все же можно различить невооруженным глазом.
В 1596 г. голландский наблюдатель звезд, любитель, по имени Давид Фабрициус (1564-1617), обнаружил довольно яркую звезду в созвездии Кита; звезда эта постепенно стала тускнеть и через несколько недель вообще исчезла из виду. Фабрициус был первым, кто описал наблюдение переменной звезды.
Эта звезда получила название Мира - Чудесная. За период времени в 332 дня Мира изменяет свой блеск от приблизительно 2-й звездной величины (на уровне Полярной звезды) до 10-й звездной величины, когда она становится гораздо более слабой, чем необходимо для наблюдения невооруженным глазом. В наши дни известны многие тысячи переменных звезд, хотя большинство из них меняет свой блеск не столь драматично, как Мира.
Существуют различные причины, по которым звезды меняют свой блеск. Причем блеск иногда изменяется на много световых величин, а иногда так незначительно, что это изменение можно обнаружить лишь с помощью очень чувствительных приборов. Некоторые звезды меняются регулярно. Другие - неожиданно гаснут или внезапно вспыхивают. Перемены могут происходить циклично, с периодом в несколько лет, а могут случаться в считанные секунды. Чтобы понять, почему та или иная звезда является переменной, необходимо сначала точно проследить, каким образом она меняется. График изменения звездной величины переменной звезды называется кривой блеска, Чтобы начертить кривую блеска, измерения блеска следует проводить регулярно. Для точного измерения звездных величин профессиональные астрономы используют прибор, называемый фотометром, сейчас многочисленные наблюдения переменных звезд производятся астрономами-любителями. С помощыо специальной подготовленной карты и после некоторой практики не так уж сложно судить о звездной величине переменной звезды прямо на глаз, если сравнивать ее с постоянными звездами, расположенными рядом.
Графики блеска переменных звезд показывают, что некоторые звезды меняются регулярным (правильным) образом - участок их графика на отрезке времени определенной длины (периоде) повторяется снова и снова. Другие же звезды меняются совершенно непредсказуемо. К правильным переменным звездам относят пульсирующие звезды и двойные звезды. Количество света меняется оттого, что звезды пульсируют или выбрасывают облака вещества. Но есть другая группа переменных звезд, которые являются двойными (бинарными). Когда мы видим изменение блеска бинарных звезд, это означает, что произошло одно из нескольких возможных явлений. Обе звезды могут оказаться на линии нашего зрения, так как, двигаясь по своим орбитам, они могут проходить прямо одна перед другой. Подобные системы называются затменно-двойными звездами. Самый знаменитый пример такого рода - звезда Алголь в созвездии Персея. В тесно расположенной паре материал может устремляться с одной звезды на другую, нередко вызывая драматические последствия.
Сверхновая
Когда 24 февраля 1987 г. была открыта 5М 1987А, астрономы были очень взволнованы: ведь это была самая яркая сверхновая с 1604 г. Хотя на этот раз сверхновая вспыхнула не в нашей Галактике, а в соседней Большом Магеллановым облаке, ее звездная величина в максимуме блеска достигла 2,9, что позволяло легко наблюдать сверхновую в южном полушарии невооруженным глазом.
Впервые развитие сверхновой стало доступно наблюдению с помощыо современной аппаратуры. Используя фотографии, снятые до вспышки, удалось даже определить, какая именно звезда новая. Это оказался голубой сверхгигант с массой примерно в 17 солнечных; согласно расчетам, его возраст составлял около 20 миллионов лет.
На самом деле взрыв произошел примерно за день до его обнаружения. Это было установлено по более ранней фотографии, а исследователи, изучающие потоки космических нейтронов, 23 февраля зарегистрировали неожиданно большое их количество. Нейтрон - это элементарная частица, вряд ли имеющие массу. Их очень трудно регистрировать. Такая работа чрезвычайно важна, так как нейтроны уносят большое количество энергии и целом ряде ядерных реакций. Обнаружение нейтронов показало, что наша теория возникновения сверхновой в основном верна. Однако на месте вспышки сверхновой не удалось обнаружить пульсатор или нейтронную звезду.
Крабовидная туманность
Один из самых известных остатков сверхновой, Крабовидная туманность, обязана своим названием Уильяму Парсонсу, третьему графу Россу, который первым наблюдал ее в 1844 г. Ее впечатляющее имя не совсем соответствует этому странному объекту. Теперь мы знаем, что эта туманность - остаток сверхновой, которую наблюдали и описали в 1054 г. китайские астрономы. Ее возраст был установлен в 1928 г. Эдвином Хабблом, измерившим скорость ее расширения и обратившим внимание на совпадение ее положения на небе со старинными китайскими записями. Она имеет форму овала с неровными краями; красноватые и зеленоватые нити светящегося газа видны на фоне тусклого белого пятна. Светящиеся нити напоминают сеть, наброшенную на отверстие. Белый свет исходит от электронов, несущихся по спиралям в сильном магнитном иоле. Туманность является также интенсивным источником радиоволн и рентгеновских лучей. Когда астрономы осознали, что пульсары - это нейтрон сверхновых, им стало ясно, что искать пульсары надо именно в таких остатках типа Крабовидной туманности. В 1969 г. 6ыло обнаружено, что одна из звезд вблизи центра туманности периодически излучает радиоимпульсы, а также световые и рентгеновские сигналы через каждые 33 тысячных доли секунды. Это очень высокая частота даже для пульсара, но она постепенно понижается. Те пульсары, которые вращаются гораздо медленнее, намного старее пульсатора Крабовидной туманности.
В начале 20 в., особенно после 1920, произошёл переворот в научных представлениях о звёздах. Их начали рассматривать как физические тела; стали изучаться структура звезды, условия равновесия их вещества, источники энергии. Этот переворот был связан с успехами атомной физики, которые привели к количественной теории звёздных спектров, и с достижениями ядерной физики, давшими возможность провести аналогичные расчёты источников энергии и внутреннего строения звезды (наиболее важные результаты были получены немецкими учёными Р. Эмденом, К. Шварцшильдом, Х. Бете, английскими учёными А. Эддингтоном, Э. Милном, Дж. Джинсом, американскими учёными Г. Ресселом, Р. Кристи, советским учёным С. А. Жевакиным. В середине 20 в. исследования звёзд приобрели ещё большую глубину в связи с расширением наблюдательных возможностей и применением электронных вычислительных машин (американские учёные М. Шварцшильд, А. Сандидж, английский учёный Ф. Хойл, японский учёный С. Хаяси и другие). Большие успехи были достигнуты также в изучении процессов переноса энергии в фотосферах звёзд (советские учёные Э. Р. Мустель, В. В. Соболев, американский учёный С. Чандрасекар) и в исследованиях структуры и динамики звёздных систем (голландский учёный Я. Оорт, советские учёные П. П. Паренаго, Б. В. Кукаркин и другие).
Заключение
Итак, звёзды – это самосветящиеся, раскалённые газовые шары, этим они подобны Солнцу, температура которого на поверхности 6000°. Наряду со звёздами, в точности похожими на Солнце, есть звёзды больше и меньше его по размерам, более горячие и более холодные, более и менее яркие – мир звёзд чрезвычайно разнообразен. Вероятно, многие звёзды окружены планетами, и на некоторых из них должна быть жизнь. Звёзды движутся со скоростями, доходящими до сотен километров в секунду, но не сталкиваются, так как расстояния между ними громадны. Свет, пробегая за секунду 300 000 км, от ближайшей звезды до Земли идёт свыше 4 лет, а от Солнца – примерно 8 минут. Звёзды также бывают: двойными, переменными, кратными, оптически-двойными, спектрально-двойными, затменно-двойными, новыми, периодическими, неправильными и затменно-переменными. Многие звёзды образуют системы, состоящие из двух, трёх и более звёзд, а также звёздные скопления – от нескольких десятков до миллиона звёзд. Звёздные скопления бывают двух типов: рассеянные и шаровые. Звёзды и звёздные скопления образуют гигантскую систему, называемую Галактику. Луч света от одного её края до другого идёт около 100 000 лет. Установлено, что наша Галактика – не единственная звёздная система. Существует множество других подобных ей звёздных систем, называемых галактиками, например, галактика в созвездии Андромеды, в созвездии Гончих Псов и другие. Звёзды постоянно то тут, то там возникают, зарождаются, совершают долгий путь развития и , наконец, прекращают своё существование в этом виде с тем, чтобы образующая их материя приняла новую форму.
Обоснование
Я выбрала именно эту тему потому, что меня всегда привлекало и поражало звёздное небо, его красота, насыщенность и необычность. Впервые я задумалась об этом, когда была летом в деревне, и, проснувшись как-то ночью, я увидела необычайно прекрасное зрелище – звёздное небо, яркое и отчётливое, которое никогда не увидишь в городе. И после этого, когда мне надо было выбирать тему, я вспомнила и выбрала эту, т.к. мне многое было непонятно, например, что такое вообще звёзды, как они появляются, из чего состоят, почему образовываются звёздные скопления, какие имена имели звёзды в разных странах и у разных народов и т.д. Делав этот реферат, я узнала много интересного, узнала ответы на многие вопросы и открыла много нового для себя.
Список используемой литературы
1) «Вокруг света», №7, 2003г. Ст. «Кривое зеркало земли» Автор-Николай Андреев, стр.132-140
2) «Независимая газета», 2002г.,30 марта Ст. «Галактический роддом в созвездии Пегаса. Космический телескоп Хаббла впервые зафиксировал непосредственно момент возникновения новых звёзд» Автор-Морозов А.
3) «Наука и жизнь», №1,2001г. Ст. «Орион и его «команда» - звезды и звёздные скопления» Автор-Остапенко А., председатель московского астрономического клуба, стр.104-110
4) «Природа,№8,2000г. Ст. «Свет далёких планет и жизнь на Земле» Автор-Кузьмин
5) «Наука и жизнь»,№6, 2000г. Ст. «Звёздная летопись цивилизации» Автор-Шишлова А.
6) «Природа», №3, 2000г. Ст. «Как рождаются звёзды» Автор-Сурдин
7) «Природа», №5,1999г. Ст. «Тени звёзд» Автор-Гончаров
8) «Наука и жизнь»,№12, 1999г. Ст. «Жизнь во вселенной» Автор-Николаев Г., стр.59-64
9) «Звёзды, их рождение, жизнь и смерть», И.С. Шкловский, Издательство «Наука», Москва 1977г.
10) Е.П.Левитан «Астрономия», Издательство «Просвещение», Москва 1994 г.