Кальций и его роль для человечества

СОДЕРЖАНИЕ: История и происхождение названия, нахождение в природе, получение кальция, его физические и химические свойства. Применение металлического кальция и его соединений. Биологическая роль и потребность организма в кальции, его содержание в продуктах питания.

Реферат

Кальций и его роль для человечества

Содержание

Введение

История и происхождение названия

Нахождение в природе

Получение

Физические свойства

Химические свойства

Применение металлического кальция

Применение соединений кальция

Биологическая роль

Заключение

Список литературы

Введение

Кальций — элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается символом Ca (лат. Calcium). Простое вещество кальций (CAS-номер: 7440-70-2) — мягкий, химически активный щёлочноземельный металл серебристо-белого цвета.

Несмотря на повсеместную распространенность элемента №20, даже химики и то не все видели элементарный кальций. А ведь этот металл и внешне и по поведению совсем непохож на щелочные металлы, общение с которыми чревато опасностью пожаров и ожогов. Его можно спокойно хранить на воздухе, он не воспламеняется от воды. Механические свойства элементарного кальция не делают его «белой вороной» в семье металлов: по прочности и твердости кальций превосходит многие из них; его можно обтачивать на токарном станке, вытягивать в проволоку, ковать, прессовать.

И все-таки в качестве конструкционного материала элементарный кальций почти не применяется. Для этого он слишком активен. Кальций легко реагирует с кислородом, серой, галогенами. Даже с азотом и водородом при определенных условиях он вступает в реакции. Среда окислов углерода, инертная для большинства металлов, для кальция – агрессивная. Он сгорает в атмосфере CO и CO2 .

История и происхождение названия

Название элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций электролитическим методом. Дэви подверг электролизу смесь влажной гашёной извести с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама кальция. Отогнав из нее ртуть, Дэви получил металл, названный кальцием.

Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём — вещества сложные.

Нахождение в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.

На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Изотопы. Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %.

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), как было недавно обнаружено, испытывает двойной бета-распад с периодом полураспада 5,31019 лет.

В горных породах и минералах . Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca[Al2Si2O8].

В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.

Довольно широко распространены такие минералы кальция, как кальцит CaCO3 , ангидрит CaSO4 , алебастр CaSO4 ·0.5H2 O и гипс CaSO4 ·2H2 O, флюорит CaF2 , апатиты Ca5 (PO4)3 (F,Cl,OH), доломит MgCO3 ·CaCO3 . Присутствием солей кальция и магния в природной воде определяется её жёсткость.

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвертое место по числу минералов).

Миграция в земной коре. В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

СаСО3 + H2 O + CO2 Са (НСО3 )2 Ca2 + + 2HCO3 -

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Биогенная миграция . В биосфере соединения кальция находятся практически во всех животных и растительных тканях (см. тж. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca5(PO4)3OH, или, в другой записи, 3Ca3 (PO4 )2 ·Са(OH)2 — основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция — около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Получение

Свободный металлический кальций получают электролизом расплава, состоящего из CaCl2 (75-80 %) и KCl или из CaCl2 и CaF2 , а также алюминотермическим восстановлением CaO при 1170—1200 °C:

4CaO + 2Al = CaAl2 O4 + 3Ca.

Физические свойства

Металл кальций существует в двух аллотропных модификациях. До 443 °C устойчив -Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив -Ca с кубической объемно-центрированной решеткой типа -Fe (параметр a = 0,448 нм). Стандартная энтальпия H0 перехода составляет 0,93 кДж/моль.

Химические свойства

Кальций — типичный щелочноземельный металл. Химическая активность кальция высока, но ниже, чем всех других щелочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щелочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина.

В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca2 +/Ca0 2,84 В, так что кальций активно реагирует с водой, но без воспламенения:


Ca + 2Н2 О = Ca(ОН)2 + Н2 + Q.

С активными неметаллами (кислородом, хлором, бромом) кальций реагирует при обычных условиях:

2Са + О2 = 2СаО, Са + Br2 = CaBr2 .

При нагревании на воздухе или в кислороде кальций воспламеняется. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:

Са + Н2 = СаН2 , Ca + 6B = CaB6 ,

3Ca + N2 = Ca3 N2 , Са + 2С = СаС2 ,

3Са + 2Р = Са3Р2 (

фосфид кальция), известны также фосфиды кальция составов СаР и СаР5;

2Ca + Si = Ca2Si

(силицид кальция), известны также силициды кальция составов CaSi, Ca3 Si4 и CaSi2 .

Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты (то есть эти реакции — экзотермические). Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например:

СаН2 + 2Н2 О = Са(ОН)2 + 2Н2 ,

Ca3 N2 + 3Н2 О = 3Са(ОН)2 + 2NH3 .

Ион Ca2+ бесцветен. При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.

Такие соли кальция, как хлорид CaCl2 , бромид CaBr2 , иодид CaI2 и нитрат Ca(NO3 )2 , хорошо растворимы в воде. Нерастворимы в воде фторид CaF2 , карбонат CaCO3, сульфат CaSO4 , ортофосфат Ca3 (PO4)2 , оксалат СаС2 О4 и некоторые другие.

Важное значение имеет то обстоятельство, что, в отличие от карбоната кальция СаСО3, кислый карбонат кальция (гидрокарбонат) Са(НСО3)2 в воде растворим. В природе это приводит к следующим процессам. Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение:

СаСО3 + СО2 + Н2 О = Са(НСО3 )2 .

В тех же местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция:

Са(НСО3 )2 = СаСО3 + СО2 + Н2 О.

Так в природе происходит перенос больших масс веществ. В результате под землей могут образоваться огромные провалы, а в пещерах образуются красивые каменные «сосульки» — сталактиты и сталагмиты.

Наличие в воде растворенного гидрокарбоната кальция во многом определяет временную жёсткость воды. Временной ее называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО3. Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.

Применение металлического кальция

Главное применение металлического кальция — это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудновосстанавливаемых металлов, таких, как хром, торий и уран. Сплавы кальция со свинцом находят применение в аккумуляторных батареях и подшипниковых сплавах. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов.

Металлотермия

Чистый металлический кальций широко применяется в металлотермии при получении редких металлов.

Легирование сплавов

Чистый кальций применяется для легирования свинца, идущего на изготовление аккумуляторных пластин, необслуживаемых стартерных свинцово-кислотных аккумуляторов с малым саморазрядом. Также металлический кальций идет на производство качественных кальциевых баббитов БКА.

Ядерный синтез

Изотоп 48Ca — наиболее эффективный и употребительный материал для производства сверхтяжёлых элементов и открытия новых элементов таблицы Менделеева. Например, в случае использования ионов 48Ca для получения сверхтяжёлых элементов на ускорителях ядра этих элементов образуются в сотни и тысячи раз эффективней, чем при использовании других «снарядов» (ионов).

Применение соединений кальция

Гидрид кальция . Нагреванием кальция в атмосфере водорода получают CaH2 (гидрид кальция), используемый в металлургии (металлотермии) и при получении водорода в полевых условиях.

Оптические и лазерные материалы. Фторид кальция (флюорит) применяется в виде монокристаллов в оптике (астрономические объективы, линзы, призмы) и как лазерный материал. Вольфрамат кальция (шеелит) в виде монокристаллов применяется в лазерной технике, а также как сцинтиллятор.

Карбид кальция. Карбид кальция CaC2 широко применяется для получения ацетилена и для восстановления металлов, а также при получении цианамида кальция (нагреванием карбида кальция в азоте при 1200 °C, реакция идет экзотермически, проводится в цианамидных печах).

Химические источники тока. Кальций, а также его сплавы с алюминием и магнием используются в резервных тепловых электрических батареях в качестве анода(например кальций-хроматный элемент). Хромат кальция используется в таких батареях в качестве катода. Особенность таких батарей — чрезвычайно долгий срок хранения (десятилетия) в пригодном состоянии, возможность эксплуатации в любых условиях (космос, высокие давления), большая удельная энергия по весу и объему. Недостаток в недолгом сроке действия. Такие батареи используются там, где необходимо на короткий срок создать колоссальную электрическую мощность (баллистические ракеты, некоторые космические аппараты и.др.).

Огнеупорные материалы. Оксид кальция, как в свободном виде, так и в составе керамических смесей, применяется в производстве огнеупорных материалов.

Лекарственные средства. Соединения кальция широко применяются в качестве антигистаминного средства.

Хлорид кальция

Глюконат кальция

Глицерофосфат кальция

Кроме того, соединения кальция вводят в состав препаратов для профилактики остеопороза, в витаминные комплексы для беременных и пожилых.

Биологическая роль

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть содержится в скелете и зубах в виде фосфатов. Из различных форм карбоната кальция (извести) состоят скелеты большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также в обеспечении постоянного осмотического давления крови. Ионы кальция также служат одним из универсальных вторичных посредников и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов и др. Концентрация кальция в цитоплазме клеток человека составляет около 107 моль, в межклеточных жидкостях около 103 моль.

Потребность в кальции зависит от возраста. Для взрослых необходимая дневная норма составляет от 800 до 1000 миллиграммов (мг), а для детей от 600 до 900 мг, что для детей очень важно из-за интенсивного роста скелета. Большая часть кальция, поступающего в организм человека с пищей, содержится в молочных продуктах, оставшийся кальций приходится на мясо, рыбу, и некоторые растительные продукты (особенно много содержат бобовые). Всасывание происходит как в толстом, так и тонком кишечнике и облегчается кислой средой, витамином Д и витамином С, лактозой, ненасыщеными жирными кислотами. Немаловажна роль магния в кальциевом обмене, при его недостатке кальций «вымывается» из костей и осаждается в почках (почечные камни) и мышцах.

Усваиванию кальция препятствуют аспирин, щавелевая кислота, производные эстрогенов. Соединияясь с щавелевой кислотой, кальций дает нерастворимые в воде соединения, которые являются компонентами камней в почках.

Содержания кальция в крови из-за большого количества связанных с ним процессов точно регулируется, и при правильном питании дефицита не возникает. Продолжительное отсутствие в рационе может вызвать судороги, боль в суставах, сонливость, дефекты роста, а также запоры. Более глубокий дефицит приводит к постоянным мышечным судорогам и остеопорозу. Злоупотребление кофе и алкоголем могут быть причинами дефицита кальция, так как часть его выводится с мочой.

Избыточные дозы кальция и витамина Д могут вызвать гиперкальцемию, после которой следует интенсивная кальцификация костей и тканей (в основном затрагивает мочевыделительную систему). Продолжительный переизбыток нарушает функционирование мышечных и нервных тканей, увеличивает свертываемость крови и уменьшает усвояемость цинка клетками костной ткани. Максимальная дневная безопасная доза составляет для взрослого от 1500 до 1800 миллиграмм.

Содержание кальция в продуктах питания:

Продукты Кальций, мг/100 г

Мак 1460

Кунжут 783

Крапива 713

Просвирник лесной 505

Подорожник большой 412

Галинсога 372

Сардины в масле 330

Будра плющевидная 289

Шиповник собачий 257

Миндаль 252

Подорожник ланцетолист. 248

Лесной орех 226

Амарант семя 214

Кресс-салат 214

Кале 212

Соя бобы сухие 201

Молоко коровье 120

Малое содержание кальция: рыба (30-90); творог (80); хлеб с отрубями (60); мясо, субпродукты, крупы, свекла (менее 50).

Рекомендуемые Всемирной Организацией Здравоохранения суточные нормы потребления кальция.

Дети до 3 лет — 600 мг.

Дети от 4 до 10 лет — 800 мг.

Дети от 10 до 13 лет — 1000 мг.

Подростки от 13 до 16 лет — 1200 мг.

Молодежь от 16 и старше — 1000 мг.

Взрослые от 25 до 50 лет — от 800 до 1200 мг.

Беременные и кормящие грудью женщины — от 1500 до 2000 мг.

Заключение

Кальций – один из самых распространенных элементов на Земле. В природе его очень много: из солей кальция образованы горные массивы и глинистые породы, он есть в морской и речной воде, входит в состав растительных и животных организмов.

Кальций постоянно окружает горожан: почти все основные стройматериалы – бетон, стекло, кирпич, цемент, известь – содержат этот элемент в значительных количествах.

Естественно, что, обладая такими химическими свойствами, кальций не может находиться в природе в свободном состоянии. Зато соединения кальция – и природные и искусственные – приобрели первостепенное значение.

Список литературы

1. Редкол.: Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 293. — 671 с

2. Доронин. Н. А. Кальций, Госхимиздат, 1962. 191 стр. с илл.

3. Доценко ВА. - Лечебно-профилактическое питание. - Вопр. питания, 2001 - N1-с.21-25

4. Bilezikian J. P. Calcium and bone metabolism // In: K. L. Becker, ed.

Скачать архив с текстом документа