Холодильная техника и технология

СОДЕРЖАНИЕ: Изучение термодинамических диаграмм холодильных агентов. Построение цикла в диаграммах. Агрегатное состояние хладагента и значение его параметров в узловых точках. Характеристика процессов, составляющих цикл. Нанесение линии заданной температуры кипения.

Министерство образования и науки РФ

Новосибирский Государственный Технический Университет

Кафедра технической теплофизики

Расчетно-графическая работа по дисциплине

«Холодильная техника и технология»

Факультет: ЭМ

Группа:

Студент:

Преподаватель:Будасова С.А.

Новосибирск 2007


Содержание

1.Цель работы

2.Исходные данные

3.Построение цикла

4.Изображение цикла в тепловых диаграммах i-lgP S-T

5.Характеристика процессов, составляющих цикл

6.Схема паровой компрессионной холодильной машины

7.Агрегатное состояние хладагента и значение его параметров в узловых точках

8.Расчёт цикла

9.Литература


1.Цель работы

1.Изучение термодинамических диаграмм холодильных агентов.

2.Построение цикла в диаграммах T-S и lgP-i.

3.Расчёт цикла холодильной машины.

2.Исходные данные

Таблица1

Номер варианта

хладагент

Холодопро-

изводитель

ность

машины

Q0 , кВт

Темпера

тура кипения хладагента

Т0 , 0 С

Температура конденсации хладагента Тк , 0 С

Температура переохлаждения хлад

агента

Тп , 0 С

Температура перегрева хладагента на входе в компрессор

ТВ , 0 С

14 аммиак 5.8 -20 +35 +30 -15

3. Построение цикла

Построение точки 1. Построение цикла начинаем с нанесения линии заданной температуры в кипения Т0 =-30 0 С, которая в области влажного пара совпадает с линией давления в испарителе P0 =0,124 МПа. На пересечении этой линии с правой пограничной кривой (x=1) диаграммы находится точка 1 . Для точки 1по вспомогательным линиям диаграммы находим энтальпию i1 = 1650 кДж/кг, удельный объём V1 = 0,9 м3 /кг паров холодильного агента и энтропию S1 =9,2 кДж/кг 0 C, паросодержание X=1. (При нахождении всех следующих точек параметры i,V,S,X будем определять аналогично по вспомогательным линиям диаграммы и сводить в таблицу2)

Построение точки 1. Для построения точки 1 находим пересечение в области перегретого пара (x1), т.е. за правой пограничной кривой, линии P0 =0,124 МПа и TВ =-250 C

Построение точки 2 . Аналогично, по пересечению линии x=1 с заданной изотермой Tк =+300 C определяем точку 2 , через которую проходит линия соответствующего давления Pк = 1,15МПа.

Построение точки 2. Из точки 1 проводим линию адиабатического сжатия паров холодильного агента в компрессоре S= 9,28кДж/кг0 C до пересечения с линией постоянного давления в конденсаторе Pк = 1,15МПа, соответсвующего заданной температуре конденсации Tк =+30C и находим точку 2.

Построение точки 3. Точка 3 находится на пересечении линии Pк = МПа с левой пограничной кривой x= 0 .

Построение точки 3. Для нахождения точки 3 известно, что давление в ней должно быть Pк =1,15 МПа, а температура равна заданной Tп = +250 C. Следовательно, точку 3 находим на пересечении линии Pк = 1,15 МПа с линией изотермы Tп =+250 C в области жидкого состояния холодильного агента.

Построение точки 4 . Точка 4 определяется как точка пересечения линии дросселирования i= 544 кДж/кг, проведённой из точки 3, с линией P0 =0,124МПа.

4. Характеристика процессов, составляющих цикл

4-1 - процесс кипения жидкого холодильного агента. Процесс этот протекает в испарителе холодильной машины. Процесс этот изотермический, то есть протекает при постоянной температуре T0 =-300 C(а так же изобарический – при постоянном давлении P0 =0,124МПа). По тепловому эффекту этот процесс эндотермический, то есть этот процесс протекает с поглощением тепла. Тепло при этом отнимается от охлаждаемой среды через стенку испарителя. Количество тепла численно равно площади под линией процесса (в координатах S-T площадь 4-S 4 –S1 -1). Или величине проекции процесса на ось абсцисс (в координатах i-lgP отрезок i1 - i4 ). Кипение продолжается до тех пор, пока вся жидкость не превратится в пар.

Точка 1 соответствует поступлению в компрессор сухого пара.

1-1 – процесс перегрева парообразного холодильного агента. Процесс этот протекает во всасывающем трубопроводе компрессора, либо в регенеративном теплообменнике, либо частично в испарителе. В данной работе для простоты можно считать, что перегрев осуществляется в испарителе ( в этом случае тепло этого процесса в сумме с теплом процесса кипение составляет величину удельной массовой холодопроизводительности q0 ). Процесс перегрева 1-1 протекает с повышением температуры от T0 = -30 0 C до TВ =T1 =-250 C при постоянном давлении P0 =0,124 МПа. Процесс этот эндотермический. Количество тепла данного численно равно площади под процессом ( в координатах S-T площадь S1 - 1- 1- S1 ) или величине проекции на ось абсцисс(в координатах i-lgP отрезок i1 - i1 ).

Точка 1 соответствует поступлению в компрессор перегретого пара холодильного агента. Она характеризует перегрев паров хладагента в испарителе для предотвращения попадания капель жидкого хладагента в компрессор.

1-2- процесс сжатия сухих паров хладагента с давлением кипения конденсации Pк =1,15МПа. Этот процесс протекает в цилиндрах компрессора. Процесс адиабатический, то есть протекает без теплообмена с окружающей средой при постоянной энтропии S =9,28кДж/кг0 C. Процесс протекает с повышением температуры хладагента от T1 = TВ =-25 0 C до T2 = +1300 C. На осуществление этого процесса затрачивается работа, которая на диаграмме i-lgP численно равна отрезку i2 -i1 .

Точка 2 характеризует выталкивание сжатых паров холодильного агента из компрессора в конденсатор.

2-2 - процесс понижения температуры пара хладагента от T2 = 130 0 C до температуры начала конденсации Tк = +300 C. Процесс протекает в конденсаторе. Этот процесс изобарический, то есть происходит при постоянном давлении Pк =1,15МПа. По тепловом эффекту этот процесс экзотермический, то есть протекает с выделением тепла, которое отводится от хладагента охлаждающей средой ( водой или воздухом). Количество тепла на диаграмме i-lgP численно определяется отрезком i2 -i2 (на диаграмме S-T-площадью под процессом S2 -2 -2-S2 ).

2-3 - процесс конденсации паров холодильного агента. Процесс протекает в конденсаторе. Этот процесс изотермический (протекает при постоянной температуре Tк =+300 C) и изобарический (протекает при постоянном давлении Pк =1,15МПа). По тепловому эффекту это процесс экзотермический. Количество тепла на диаграмме i-lgP численно определяется отрезком i2 -i3 (на диаграмме S-T – площадью под процессом S3 -3-2- S2 ). Тепло отводится от хладагента охлаждающей средой.

Точка 3 - это точка полной конденсации холодильного агента.

3-3 – процесс переохлаждения сконденсировавшегося жидкого хладагента от температуры Tк =+30 0 C до температуры Tп =+250 C. Процесс протекает в конденсаторе , терморегулирующем вентиле, теплообменнике. Процесс изобарический, то есть происходит при постоянном давлении Pк = МПа. По тепловому эффекту процесс экзотермический. Количество тепла на диаграмме i-lgP численно определяется отрезком i3 -i3 ( на диаграмме S-T- площадью S3 -3-3-S3 ).

Точка 3 определяет параметры жидкого хладагента, направляющегося к терморегулирующему вентилю.

3-4 - процесс дросселирования хладагента в терморегулирующем вентиле при постоянной энтальпии i3 =i4 =544кДж/кг. Проходя через терморегулирующий вентиль, хладагент дросселируется с давления конденсации Pк =1,15МПа до давления кипения P0 =0,124МПа, при этом происходит понижение температуры хладагента от Tк =+30 0 C до T0 = -30 0 C.

Точка 4 характеризует параметры парожидкостной смеси после дросселирования. Также точка 4 характеризует начало кипения хладагента в испарителе при постоянных давлении P0 =0,124МПа и температуре T0 =-30 0 C.

6.Агрегатное состояние хладагента и значение его параметров в узловых точках

Узловые точки

Агрегатное

состояние

Температура давление Энтальпия энтропия Паросодержание Х (в долях) Удельный объём
1 Сухой насыщенный пар -15 0.186 1680 9.1 1 0.64
1 Перегретый пар -20 0.186 1670 9.05 1 0.62
2 Перегретый пар 103 1.4 1960 9.1 1 0.14
2 Сухой насыщенный пар +35 1.4 1724 8.38 1 0.98
3 Насыщенная жидкость +30 1.4 570 4.67 0 -
3 Жидкость +35 1.4 591 4.80 0 -
4 Влажный пар -20 0.186 560 4.69 0.175 0.16

7. Расчёт цикла

п/п

Определяемый параметр Расчетнаяформула Значение параметра
1

Холодопроизводительность 1 кг хладагента (удельная массовая ), кДж/кг:

При кипении

При перегреве

Проверка

q0 =i1 -i4

qok =i1 -i4

qon =i1 -i1

qo =qok +qon

1120

1110

10

1120

2 Работа, затраченная на сжатие 1 кг хладагента в компрессоре, кДж/кг l=i2 -i1 290
3

Тепло, отданное 1кг хладагента, кДж/кг:

При конденсации

При переохлаждении

Проверка

q=i2 -i3

qk =i2 -i3

qn =i3 -i3

q=qk+qn

1390

1369

21

1390

4 Уравнение теплового баланса холодильной машины q=qo +l 1400
5 Холодильный коэффициент =qo /l=(i1 -i4 )/(i2 -i1 ) 4
6 Масса циркулирующего в машине хладагента, кг/ч, требующаяся для обеспечения заданной холодопроизводительности Q0 G=3600Q0 /qo 18.6
7 Объёмная холодопроизводитнльность всасываемых в компрессор паров холодильного агента, кДж/м3 qv =qo /v1 1750
8

Объёмная производительность компрессора ( объём циркулирующего в системе хладагента ), м3

или

V=3600Q0 /qv

V=Gv1

11.9

11.9

9

Теоретическая (конобатическая) мощность компрессора, кВт:

В зависимости от холодопроизводительности Q0 или

В зависимости о массы циркулирующего хладагента G

Nm =Q0 /

Nm =Gl/3600

1.45

1.45

10

Теоретическая тепловая нагрузка на конденсатор, кВт

При конденсации

При переохлаждении

Q=qG/3600

Qk =qk G/3600

Qn =qn G/3600

Q=Q0 +Nm

7.2

7.07

0.10

7.5

11 Коэффициент подачи компрессора (определяют по графику) 0.55
12 Объём, описываемый поршнм м3\ Vn =V/ 0.006
13 Действительная (индикаторная) мощность сжатия в компрессор, кВт Ni =Nm /i 1.82
14

Эффективная мощность (на валу компрессора)

(механический КПД м =0,82-0,92)

Nе =Ni /м 2.1
15 Действительная тепловая нагрузка на конденсатор, кВт Q=Q0 +Ni 7.62

Список литературы

1. Расчёт и построение теоретического цикла паровой компрессионной машины. Составитель С.А. Будасова, канд. Тех. Наук, доц.НГТУ, 1998 г.

2. Мещеряков Ф.Е. Основы холодильной техники и холодильной технологии. - М.: Пищевая промышленность, 1975.

3. Мальгина Е.Б., Мальгин Ю.В., Суедов Б.П. Холодильные машины и установки. - М.; Пищевая промышленность, 1980.

4. Мальгина Е.В., Мальгин Ю.В. Холодильные машины и установки. - М.: Пищевая промышленность, 1913.

5.Холодильная техника и технология. Методические указания к выполнению расчётно-графической работы.Составитель С.А. Будасова, канд. Тех. Наук, доц.Рецензент Спарин В.А. НГТУ,1999 г.

Скачать архив с текстом документа